|
Để bpt đầu có nghĩa, $x$ phải thỏa mãn điều kiện $\begin{cases}-1\leq x<5 \\ 2+4sin\frac{\pi}{5}-x>0 va \neq 1 \end{cases} $ Do $x\geq -1$ nên bpt thứ hai $\Leftrightarrow 4x^2+5x+9>3x^2+10x+3\Leftrightarrow x<2;x>3$ Kết hợp điều kiện $x\in Z$ và $-1\leq x<5\Rightarrow \begin{cases}-1\leq x<2; 2<x<5 \\ x\in Z \end{cases} $ $\Rightarrow x=-1;0;1;4$ Thử trực tiếp các giá trị này vào bpt đầu, ta được nghiệm duy nhất của hệ là $x=1$
|