|
Ta có: $\frac{1}{\sin A}+\cot A=\frac{1+\cos A}{\sin A}=\frac{1}{\displaystyle\tan \frac{A}{2}}$ $\Rightarrow \tan\frac{A}{2}=\frac{c-b}{a}\Rightarrow c>b$ Từ đó ta có: $\frac{b^2+c^2-a^2}{2bc}=\cos A=\frac{\displaystyle1-\tan^2\frac{A}{2}}{\displaystyle1+\tan^2\frac{A}{2}}=\frac{\displaystyle1-\frac{(c-b)^2}{a^2}}{\displaystyle1+\frac{(c-b)^2}{a^2}}$ $\Rightarrow \frac{(b^2-c^2)^2-a^4}{bc(a^2+(b-c)^2)}=0$ $\Leftrightarrow a^4=(b^2-c^2)^2$ $\Leftrightarrow a^2=c^2-b^2\Leftrightarrow \Delta ABC$ vuông tại $C$.
|