Cho hình chóp S.ABCD có đáy là hình vuông và cạnh SA  ⊥  (ABCD) . Gọi H, I, K lần lượt là hình chiếu vuông góc của A trên SB, SC, SD. (SA = AB = a)

1, C/m: BC    (SAB) ; BD    SC
2, C/m: SC    (AHK);  I ∈ (AHK)
3, Tính diện tích thiết diện của hình chóp S.ABCD cắt bởi mp $(\alpha )$ đi qua A và vuông góc với SC
3) Do chỉ có duy nhất 1mp // với SC đó là mp(HAKI)=> thiết diện chóp S.ABCD là tứ diện (HAKI) 
=> Ta sẽ xét diện tích của mp(HAKI)  :)


Có $\begin{cases} BD  \bot  SA  (Do SA \bot  mp(ABCD)) \\ BD \bot  AC  (Do  ABCD  là  hình  vuông)    \end{cases}$
=> $BD \bot mp(SAC) $

Có $\Delta$SAB = $\Delta$SAD  (cgc)
=> SB = SD.  (3)

Do $\Delta$SAD = $\Delta$SAB nên các đường cao hạ từ đỉnh góc vuông bằng nhau tức $AH = AK$
=> $\Delta$SAH = $\Delta$SAK (vì có cạnh huyền và góc vuông bằng nhau)
=> $SH=SK$. (4)

Từ (3)(4)
=> $\frac {SK}{SD}=\frac{SH}{SB}$

Theo định lí Talet đảo ta có:
$HK//BD$
Mà  $BD \bot  mp(SAC)$
=>  $HK \bot mp(SAC)$
=>  $HK \bot AI$
=> Ta gọi AI cắt HK tại M.


Trong $\Delta$ABC có $AC^2=AB^2+BC^2=a^2+a^2=2a^2$
=> $AC=a\sqrt{2}$

Trong $\Delta$ SAC có: $\frac {1}{AI^2}=\frac {1}{SA^2}+\frac {1}{AC^2}$
=> $\frac {1}{AI^2}=\frac {1}{a^2}+\frac {1}{2a^2}$$ = \frac {2+1}{2a^2}$
=> $AI= \frac {\sqrt{2}}{\sqrt{3}}a$

Trong $\Delta$SAD có: $\frac {1}{AK^2}=\frac {1}{SA^2}+\frac {1}{AD^1}$
$\frac {1}{AK^2}=\frac {1}{a^2}+\frac {1}{a^2} =\frac {2}{a^2}$
=> $AK^2=\frac {a^2}{2}$

Trong $\Delta$ SAK có:
$AK^2+SK^2=SA^2$
$\frac {a^2}{2} +SK^2=a^2$
$SK = \frac {a}{\sqrt{2}}$

Trong $\Delta$SAD có: 
$SD^2=SA^2+AD^2$
=> $SD^2=a^2+a^2=2a^2$
=> $SD=a\sqrt{2}$

Trong $\Delta$SBD có:
$\frac {SK}{SD}=\frac {HK}{BD}$ (Talet)
=>$\frac {\frac {a}{\sqrt{2}}}{a\sqrt{2}}=\frac {HK}{a\sqrt{2}}$
=>$HK=\frac {a}{\sqrt{2}}$








Có $S_{HAKI}= S_{\Delta AHK} + S_{\Delta IHK}$

=> $S_{HAKI}= \frac {1}{2}AM.HK + \frac {1}{2}IM.HK$

=> $S_{HAKI}= \frac {1}{2}HK.(AM+IM)$

=> $S_{HAKI}= \frac {1}{2}HK.AI$

=> $S_{HAKI}= \frac {1}{2} \frac {a}{\sqrt{2}} \frac {\sqrt{2}}{\sqrt{3}}a$

=> $S_{HAKI}= \frac {a^2}{2\sqrt{3}}$

2) BC $\bot$ mp(SAB) (cmt)
=> BC $\bot$ AH
Có: $\begin{cases} AH \bot  BC \\AH \bot  SB   \end{cases}$
=> $AH \bot mp(SBC) $
=> AH $\bot$ SC. (1)


Có $\begin{cases} AD \bot  DC  (do  ABCD  là  hình  vuông) \\ SA \bot  DC  (do  SA  \bot  mp(ABCD))  \end{cases}$
=> $DC  \bot  mp(SAD)$
=> $DC  \bot  AK$

Có $\begin{cases} DC \bot  AK (cmt) \\ AK \bot  SD  \end{cases}$
=> $AK \bot mp(SDC)$
=> $AK \bot SC$. (2)

Từ (1),(2)
=> $SC \bot  mp(AKH)$




Có $\begin{cases} SC \bot  AH (cmt) \\ SC \bot  AK (cmt)  \\ SC \bot  AI (gt)   \end{cases}$
Mà qua A chỉ có duy nhất 1 mặt phẳng $\bot$  SC
=> Cả 3 đường AH, AK, AI cùng nằm trên 1 mặt phẳng đi qua A và $\bot$ với SC.
=> $ I \in mp(AHK)$
=> đpcm

1) Có: 
SA $\bot$ BC (do SA $\bot$ mp(ABCD))
AB $\bot$ BC (do ABCD là hình vuông)
=> BC $\bot$ mp(SAB)

BD $\bot$ AC (do ABCD là hình vuông)
BD $\bot$ SA (do SA $\bot$ mp(ABCD))
=> BD $\bot$ mp(SAC)
=> BD $\bot$ SC

Bạn cần đăng nhập để có thể gửi đáp án

Chat chit và chém gió
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: ..................... 11/5/2018 1:39:52 PM
  • vinhlyle: hi 11/10/2018 8:03:02 PM
  • ๖ۣۜBossღ: 3:00 AM 11/11/2018 10:17:11 PM
  • quanghungnguyen256: sao wweb cứ đăng nhập mãi nhĩ, k trả lời đc bài viết nữa 11/30/2018 4:35:45 PM
  • quanghungnguyen256: web nát r à 11/30/2018 4:36:19 PM
  • quanghungnguyen256: 11/11/2018 h là 30/11. oi web chắt k ai dùng r hả 11/30/2018 4:36:44 PM
  • quanghungnguyen256: rofum ngon thế mà sao admin lại k nâng cấp nhỡ 11/30/2018 4:37:07 PM
  • nguyenlena2611: talk_to_the_hand 12/24/2018 9:24:22 PM
  • nguyenlena2611: big_grinsurpriseblushing 12/24/2018 9:28:35 PM
  • Việt EL: ^^ 2/16/2019 8:37:21 PM
  • Việt EL: he lô he lô 2/16/2019 8:37:34 PM
  • Việt EL: y sờ e ny guan hiar? 2/16/2019 8:38:15 PM
  • Việt EL: èo 2/16/2019 8:38:32 PM
  • Việt EL: éo có ai 2/16/2019 8:40:48 PM
  • dfgsgsd: Hế lô 2/21/2019 9:52:51 PM
  • dfgsgsd: Lờ ôn lôn huyền ..... 2/21/2019 9:53:01 PM
  • dfgsgsd: Cờ ắc cắc nặng.... 2/21/2019 9:53:08 PM
  • dfgsgsd: Chờ im.... 2/21/2019 9:53:12 PM
  • dfgsgsd: Dờ ai dai sắc ...... 2/21/2019 9:53:23 PM
  • dfgsgsd: ờ ưng nưng sắc.... 2/21/2019 9:53:37 PM
  • dfgsgsd: Mờ inh minh huyền.... đờ ep nặng... trờ ai... quờ a sắc.... đờ i.... 2/21/2019 9:54:11 PM
  • nln: winking 2/28/2019 9:02:14 PM
  • nln: big_grin 2/28/2019 9:02:16 PM
  • nln: smug 2/28/2019 9:02:18 PM
  • nln: talk_to_the_hand 2/28/2019 9:02:20 PM
  • nln: Specialise 2/28/2019 9:51:54 PM
  • nlnl: But they have since become two much-love 2/28/2019 10:03:10 PM
  • dhfh: sad 3/2/2019 9:27:26 PM
  • ๖ۣۜNatsu: allo 3/3/2019 11:39:32 PM
  • ffhfdh: reyeye 3/5/2019 8:53:26 PM
  • ffhfdh: ủuutrr 3/5/2019 8:53:29 PM
  • dgdsgds: ujghjj 3/24/2019 9:12:47 PM
  • ryyty: ghfghgfhfhgfghgfhgffggfhhghfgh 4/9/2019 9:34:48 PM
  • gdfgfd: gfjfjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 4/14/2019 9:53:38 PM
  • gdfgfd: sadsadsadsadsadsad 4/14/2019 9:59:30 PM
  • fdfddgf: trâm anh 4/17/2019 9:40:50 PM
  • gfjggg: a lot of advice is available for college leavers 5/10/2019 9:32:12 PM
  • linhkim2401: big_hug 7/3/2019 9:35:43 AM
  • ddfhfhdff: could you help me do this job 7/23/2019 10:29:49 PM
  • ddfhfhdff: i don't know how to 7/23/2019 10:30:03 PM
  • ddfhfhdff: Why you are in my life, why 7/23/2019 10:30:21 PM
  • ddfhfhdff: Could you help me do this job? I don't know how to get it start 7/23/2019 10:31:45 PM
  • ddfhfhdff: big_grinwhistling 7/23/2019 10:32:50 PM
  • ddfhfhdff: coukd you help me do this job 7/23/2019 10:39:22 PM
  • ddfhfhdff: i don't know how to get it start 7/23/2019 10:39:38 PM
  • huy31012002:9/13/2019 10:43:52 PM
  • huongpha226: hello 11/29/2019 8:22:41 PM
  • hoangthiennhat29: pig 4/2/2020 9:48:11 PM
  • cutein111: . 4/9/2020 9:23:18 PM
  • cutein111: . 4/9/2020 9:23:19 PM
  • cutein111: . 4/9/2020 9:23:20 PM
  • cutein111: . 4/9/2020 9:23:22 PM
  • cutein111: . 4/9/2020 9:23:23 PM
  • cutein111: hello 4/9/2020 9:23:30 PM
  • cutein111: mấy bạn 4/9/2020 9:23:33 PM
  • cutein111: mấy bạn cần người ... k 4/9/2020 9:23:49 PM
  • cutein111: mik sẽ là... của bạn 4/9/2020 9:23:58 PM
  • cutein111: hihi 4/9/2020 9:24:00 PM
  • cutein111: https://www.youtube.com/watch?v=EgBJmlPo8Xw 4/9/2020 9:24:12 PM
  • nhdanfr: Hello 9/17/2020 8:34:26 PM
  • minhthientran594: hi 11/1/2020 10:32:29 AM
  • giocon123fa: hi mọi ngừi :33 1/31/2021 10:31:56 PM
  • giocon123fa: call_me 1/31/2021 10:32:46 PM
  • giocon123fa: không còn ai nữa à? 1/31/2021 10:36:35 PM
  • giocon123fa: toi phải up cái này lên face để mọi người vào chơilaughing) 1/31/2021 10:42:37 PM
  • manhleduc712: hí ae 2/23/2021 8:51:42 AM
  • vaaa: f 3/27/2021 9:40:49 AM
  • vaaa: fuck 3/27/2021 9:40:57 AM
  • L.lawiet: l 6/4/2021 1:26:16 PM
  • tramvin1: . 6/14/2021 8:48:20 PM
  • dothitam04061986: solo ff ko 7/7/2021 2:47:36 PM
  • dothitam04061986: ai muốn xem ngực e ko ạ 7/7/2021 2:49:36 PM
  • dothitam04061986: e nứng 7/7/2021 2:49:52 PM
  • Phương ^.^: ngủ hết rồi ạ? 7/20/2021 10:16:31 PM
  • ducanh170208: hi 8/15/2021 10:23:19 AM
  • ducanh170208: xin chao mọi người 8/15/2021 10:23:39 AM
  • nguyenkieutrinh: hiu lo m.n 9/14/2021 7:30:55 PM
  • nguyenngocha651: Xin chào tất cả các bạn 9/20/2021 3:13:46 PM
  • nguyenngocha651: Có ai onl ko, Ib với mik 9/20/2021 3:14:08 PM
  • nguyenngocha651: Còn ai on ko ạ 9/20/2021 3:21:34 PM
  • nguyenngocha651: ai 12 tủi, sinh k9 Ib Iw mik nhố 9/21/2021 10:22:38 AM
Đăng nhập để chém gió cùng mọi người
  • dvthuat
  • hoàng anh thọ
  • nhungtt0312
  • Xusint
  • tiendat.tran.79
  • babylove_yourfriend_1996
  • thaonguyenxanh1369
  • hoangthao0794
  • zzzz1410
  • watashitipho
  • HọcTạiNhà
  • Cá Hêu
  • peonycherry
  • phanqk1996
  • giothienxung
  • khoaita567
  • nguyentranthuylinhkt
  • maimatmet
  • minh.mai.td
  • quybalamcam
  • m_internet001
  • bangtuyettrangsocola
  • chizjzj
  • vuivequa052
  • haibanh237
  • sweetmilk1412
  • panhhuu
  • mekebinh
  • Nghịch Thuỷ Hàn
  • Lone star
  • LanguaeofLegend
  • huongduong2603
  • i_love_you_12387
  • a ku
  • heohong_congchua
  • impossitable111
  • khanh
  • ๖ۣۜJinღ๖ۣۜKaido
  • huynhhoangphu.10k7
  • namduong2016
  • vycreepers
  • Bảo Phươngg
  • Yurika Yuki
  • tinysweets98
  • Thùy Trang
  • Hàn Thiên Dii
  • ๖ۣۜConan♥doyleღ
  • LeQuynh
  • thithuan27
  • huhunhh
  • ๖ۣۜDemonღ
  • nguyenxinh6295
  • phuc642003
  • diephuynh2009
  • Lê Giang
  • Han Yoon Min
  • ...
  • thuyvan
  • Mặt Trời Bé
  • DoTri69
  • bac1024578
  • Hạ Vân
  • thuong0122
  • nhakhoahoc43
  • tuanngo.apd
  • Đức Vỹ
  • ๖ۣۜCold
  • Lethu031193
  • salihova.eldara