|
$\sin x-\cos x$ = m $\Rightarrow $ $m^{2} = (\sin x)^{2} + (\cos x)^{2} - 2 \sin x\cos x$ = 1 - 2$\sin x\cos x$ $\Rightarrow \sin x\cos x = \frac{1-m^{2}}{2}$ $(\sin x)^{3}-(\cos x)^{3}$ =$(\sin x-\cos x)[(\sin x)^{2}+\sin x\cos x +(\cos x)^{2}]$ =$(\sin x-\cos x)[(\sin x-\cos x)^{2}+3\sin x\cos x)$ =$m[m^{2} + \frac{3}{2}(1-m^{2})]$ =$m(\frac{3-m^{2}}{2})$
|