|
Với mọi $x$ dương ta luôn có: $x+(x+1)\geq 2\sqrt{x(x+1)}$ (BĐT Cô si) Do dấu bằng ở không xảy ra nên ta luôn có: $x+(x+1)> 2\sqrt{x(x+1)}$ $\Leftrightarrow \frac{1}{x+(x+1)}<\frac{1}{2\sqrt{x(x+1)}}$ $\Leftrightarrow \frac{\sqrt{x+1}-\sqrt{x}}{x+(x+1)}<\frac{\sqrt{x+1}-\sqrt{x}}{2\sqrt{x(x+1)}}=\frac{1}{2\sqrt{x}}-\frac{1}{2\sqrt{x+1}}$ (Do $\sqrt{x+1}-\sqrt{x}>0$) Áp dụng điều trên: $\frac{\sqrt{2}-\sqrt{1}}{1+2}<\frac{1}{2}-\frac{1}{2\sqrt{2}}$ $\frac{\sqrt{3}-\sqrt{2}}{2+3}<\frac{1}{2\sqrt{2}}-\frac{1}{2\sqrt{3}}$ $\frac{\sqrt{4}-\sqrt{3}}{3+4}<\frac{1}{2\sqrt{3}}-\frac{1}{2\sqrt{4}}$ ..... $\frac{\sqrt{25}-\sqrt{24}}{24+25}<\frac{1}{10}-\frac{1}{2\sqrt{24}}$ Cộng theo vế : $\frac{\sqrt{2}-\sqrt{1}}{1+2}+\frac{\sqrt{3}-\sqrt{2}}{2+3}+\frac{\sqrt{4}-\sqrt{3}}{3+4}+...\frac{\sqrt{25}-\sqrt{24}}{24+25}<\frac{1}{2}-\frac{1}{10}=\frac{2}{5}$
|