a) Ta có MN là đường TB của △BCD⇒MN//BD Trong
(SBD) kẻ
PI//BD,PI∩SB=I⇒PI∈(MNP)⇒I là giao điểm của
(MNP) với
SB Trong (ABCD), kẻ NM∩AB=Q⇒Q là giao điểm của (MNP) với AB
⇒IQ là giao tuyến của (MNP) với (SAB)
b) Trong (ABCD) kẻ MN∩AD=H⇒H là giao điểm của (MNP) với AD
Trong (SBD) kẻ PT//BD,PT∩SD=T⇒PT∈(MNP)⇒T là giao điểm của (MNP) với SD
⇒TH là giao tuyến của (MNP) với (SAD)
c) Ta có {(MNP)∩SB=I(MNP)∩BC=M⇒IM là giao tuyến của (MNP) với (SBC)