1. Cho $f(x)$ và $g(x)$ là $2$ đa thức có hệ số nguyên thỏa mãn $f(x^{3})+xg(x^{3})$ chia hết cho đa thức $x^{2}+x+1$. Gọi $d$ là ước chung lớn nhất của $f(2015)$ và $g(2015)$. CMR : $d$ chia hết cho $2014$.
2. Cho $a, b$ là $2$ số thực phân biệt. Giả sử tồn tại đa thức $P(x)$ và $Q(x)$ có bậc không quá $2n-1$ thỏa mãn : $(x -a )^{2n}.P(x)+(x -b )^{2n}.Q(x)=1$. CMR : $Q(x)=P(a+b-x)$.
3. Cho $a, b, c$ là các số nguyên khác $0, a\neq c$ thỏa mãn : $\frac{a}{c}=\frac{a^{2}+b^{2}}{b^{2}+c^{2}}$. CMR :
$a^{2}+b^{2}+c^{2}$ là hợp số.
Ai làm ơn , giúp em đi..!!! –  Ngọc 14-04-16 05:37 PM
Có ai ko, cứu em với... –  Ngọc 14-04-16 11:49 AM
3.
Từ điều kiện suy ra $b^2(a-c)-ac(a-c)=0$, hay $(a-c)(b^2-ac)=0$. Vì $a\neq c$ nên $b^2-ac=0$, hay $b^2=ac$.
Giả sử $d$ là ước chung lớn nhất của $a$ và $c$.
Trường hợp $d>1$. 
Khi đó $a^2+b^2+c^2=a^2+ac+c^2$ chia hết cho $d$ và $d^2$. Suy ra $a^2+b^2+c^2$ là hợp số.
Trường hợp $d=1$. Không mất tính tổnq quát khi coi $a>c$. 
Vì $b^2=ac$ nên $a$ và $c$ cùng chính phương; suy ra $a=m^2$ và $c=n^2$ với $m,n$ là các số nguyên dương và $m>n$. Khi đó $a^2+b^2+c^2=(m^2+mn+n^2)(m^2-mn+n^2)$. Vì $m,n$ nguyên dương nên $m^2+mn+n^2>m^2-mn+n^2>1$. Suy ra $m^2+mn+n^2$ và $m^2-mn+n^2$ là hai ước khác nhau và cùng lớn hơn $1$ của $a^2+b^2+c^2$. Suy ra $a^2+b^2+c^2$ là hợp số.
cám ơn nha..!!! –  Ngọc 14-04-16 09:47 PM
2. 
Với $y \in R$ tùy ý. 
Lấy $x=y$ thì được 
$(y-a)^{2n}P(y)+(y-b)^{2n}Q(y)=1$ (1).
Lấy $x=a+b-y$ thì được $(b-y)^{2n}P(a+b-y)+(a-y)^{2n}Q(a+b-y)=1$; suy ra 
$(y-b)^{2n}P(a+b-y)+(y-a)^{2n}Q(a+b-y)=1$ (2).
Từ (1) và (2) suy ra $(y-b)^{2n}[Q(y)-P(a+b-y)]=(y-a)^{2n}[Q(a+b-y)-P(y)]$ (3).
Vì $y$ tùy ý nên (3) đúng với mọi $y$ thuộc $R$.
Từ (3) suy ra $(y-b)^{2n}[Q(y)-P(a+b-y)]$ chia hết cho $(y-a)^{2n}$. Vì $(y-b)^{2n}$ và $(y-a)^{2n}$ có ước chung lớn nhất bằng $1$ nên $Q(y)-P(a+b-y)$ chia hết cho $(y-a)^{2n}$. Suy ra $Q(y)-P(a+b-y)=(y-a)^{2n}R(x)$. Vì $Q(y)-P(a+b-y)$ có bậc không quá $2n-1$ nên $R(y)=0$. Suy ra $Q(y)-P(a+b-y)=0$, suy ra $Q(y)=P(a+b-y)$.
1.
Để ý rằng $f(x^3)-f(1)$ và $x[g(x^3)-g(1)]$ chia hết cho $x^3-1$. Suy ra $f(x^3)-f(1)$ và $x[g(x^3)-g(1)]$ chia hết cho $x^2+x+1$. 
Suy ra $[f(x^3)+xg(x^3)]-[f(1)+xg(1)]=f(x^3)-f(1)+x[g(x^3)-g(1)]$ chia hết cho $x^2+x+1$. 
Vì $f(x^3)+xg(x^3)$ chia hết cho $x^2+x+1$ nên $f(1)+xg(1)$ chia hết cho $x^2+x+1$. Vì $f(1)+xg(1)$ có bậc không quá $1$ nên $f(1)+xg(1)\equiv 0$, suy ra $f(1)=g(1)=0$.
Lại có: $f(2015) = f(2014+1)=2014p+f(1)=2014p$,
           $g(2015)=g(2014)=2014q+g(1)=2014q$.
Suy ra $f(2015)$ và $g(2015)$ chia hết cho $2014$. Suy ra $d$ chia hết cho $2014$.
đã thương em thì thương cho trót bài 3 đi –  Ngọc 14-04-16 09:35 PM

Bạn cần đăng nhập để có thể gửi đáp án

Chat chit và chém gió
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: ..................... 11/5/2018 1:39:52 PM
  • vinhlyle: hi 11/10/2018 8:03:02 PM
  • ๖ۣۜBossღ: 3:00 AM 11/11/2018 10:17:11 PM
  • quanghungnguyen256: sao wweb cứ đăng nhập mãi nhĩ, k trả lời đc bài viết nữa 11/30/2018 4:35:45 PM
  • quanghungnguyen256: web nát r à 11/30/2018 4:36:19 PM
  • quanghungnguyen256: 11/11/2018 h là 30/11. oi web chắt k ai dùng r hả 11/30/2018 4:36:44 PM
  • quanghungnguyen256: rofum ngon thế mà sao admin lại k nâng cấp nhỡ 11/30/2018 4:37:07 PM
  • nguyenlena2611: talk_to_the_hand 12/24/2018 9:24:22 PM
  • nguyenlena2611: big_grinsurpriseblushing 12/24/2018 9:28:35 PM
  • Việt EL: ^^ 2/16/2019 8:37:21 PM
  • Việt EL: he lô he lô 2/16/2019 8:37:34 PM
  • Việt EL: y sờ e ny guan hiar? 2/16/2019 8:38:15 PM
  • Việt EL: èo 2/16/2019 8:38:32 PM
  • Việt EL: éo có ai 2/16/2019 8:40:48 PM
  • dfgsgsd: Hế lô 2/21/2019 9:52:51 PM
  • dfgsgsd: Lờ ôn lôn huyền ..... 2/21/2019 9:53:01 PM
  • dfgsgsd: Cờ ắc cắc nặng.... 2/21/2019 9:53:08 PM
  • dfgsgsd: Chờ im.... 2/21/2019 9:53:12 PM
  • dfgsgsd: Dờ ai dai sắc ...... 2/21/2019 9:53:23 PM
  • dfgsgsd: ờ ưng nưng sắc.... 2/21/2019 9:53:37 PM
  • dfgsgsd: Mờ inh minh huyền.... đờ ep nặng... trờ ai... quờ a sắc.... đờ i.... 2/21/2019 9:54:11 PM
  • nln: winking 2/28/2019 9:02:14 PM
  • nln: big_grin 2/28/2019 9:02:16 PM
  • nln: smug 2/28/2019 9:02:18 PM
  • nln: talk_to_the_hand 2/28/2019 9:02:20 PM
  • nln: Specialise 2/28/2019 9:51:54 PM
  • nlnl: But they have since become two much-love 2/28/2019 10:03:10 PM
  • dhfh: sad 3/2/2019 9:27:26 PM
  • ๖ۣۜNatsu: allo 3/3/2019 11:39:32 PM
  • ffhfdh: reyeye 3/5/2019 8:53:26 PM
  • ffhfdh: ủuutrr 3/5/2019 8:53:29 PM
  • dgdsgds: ujghjj 3/24/2019 9:12:47 PM
  • ryyty: ghfghgfhfhgfghgfhgffggfhhghfgh 4/9/2019 9:34:48 PM
  • gdfgfd: gfjfjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 4/14/2019 9:53:38 PM
  • gdfgfd: sadsadsadsadsadsad 4/14/2019 9:59:30 PM
  • fdfddgf: trâm anh 4/17/2019 9:40:50 PM
  • gfjggg: a lot of advice is available for college leavers 5/10/2019 9:32:12 PM
  • linhkim2401: big_hug 7/3/2019 9:35:43 AM
  • ddfhfhdff: could you help me do this job 7/23/2019 10:29:49 PM
  • ddfhfhdff: i don't know how to 7/23/2019 10:30:03 PM
  • ddfhfhdff: Why you are in my life, why 7/23/2019 10:30:21 PM
  • ddfhfhdff: Could you help me do this job? I don't know how to get it start 7/23/2019 10:31:45 PM
  • ddfhfhdff: big_grinwhistling 7/23/2019 10:32:50 PM
  • ddfhfhdff: coukd you help me do this job 7/23/2019 10:39:22 PM
  • ddfhfhdff: i don't know how to get it start 7/23/2019 10:39:38 PM
  • huy31012002:9/13/2019 10:43:52 PM
  • huongpha226: hello 11/29/2019 8:22:41 PM
  • hoangthiennhat29: pig 4/2/2020 9:48:11 PM
  • cutein111: . 4/9/2020 9:23:18 PM
  • cutein111: . 4/9/2020 9:23:19 PM
  • cutein111: . 4/9/2020 9:23:20 PM
  • cutein111: . 4/9/2020 9:23:22 PM
  • cutein111: . 4/9/2020 9:23:23 PM
  • cutein111: hello 4/9/2020 9:23:30 PM
  • cutein111: mấy bạn 4/9/2020 9:23:33 PM
  • cutein111: mấy bạn cần người ... k 4/9/2020 9:23:49 PM
  • cutein111: mik sẽ là... của bạn 4/9/2020 9:23:58 PM
  • cutein111: hihi 4/9/2020 9:24:00 PM
  • cutein111: https://www.youtube.com/watch?v=EgBJmlPo8Xw 4/9/2020 9:24:12 PM
  • nhdanfr: Hello 9/17/2020 8:34:26 PM
  • minhthientran594: hi 11/1/2020 10:32:29 AM
  • giocon123fa: hi mọi ngừi :33 1/31/2021 10:31:56 PM
  • giocon123fa: call_me 1/31/2021 10:32:46 PM
  • giocon123fa: không còn ai nữa à? 1/31/2021 10:36:35 PM
  • giocon123fa: toi phải up cái này lên face để mọi người vào chơilaughing) 1/31/2021 10:42:37 PM
  • manhleduc712: hí ae 2/23/2021 8:51:42 AM
  • vaaa: f 3/27/2021 9:40:49 AM
  • vaaa: fuck 3/27/2021 9:40:57 AM
  • L.lawiet: l 6/4/2021 1:26:16 PM
  • tramvin1: . 6/14/2021 8:48:20 PM
  • dothitam04061986: solo ff ko 7/7/2021 2:47:36 PM
  • dothitam04061986: ai muốn xem ngực e ko ạ 7/7/2021 2:49:36 PM
  • dothitam04061986: e nứng 7/7/2021 2:49:52 PM
  • Phương ^.^: ngủ hết rồi ạ? 7/20/2021 10:16:31 PM
  • ducanh170208: hi 8/15/2021 10:23:19 AM
  • ducanh170208: xin chao mọi người 8/15/2021 10:23:39 AM
  • nguyenkieutrinh: hiu lo m.n 9/14/2021 7:30:55 PM
  • nguyenngocha651: Xin chào tất cả các bạn 9/20/2021 3:13:46 PM
  • nguyenngocha651: Có ai onl ko, Ib với mik 9/20/2021 3:14:08 PM
  • nguyenngocha651: Còn ai on ko ạ 9/20/2021 3:21:34 PM
  • nguyenngocha651: ai 12 tủi, sinh k9 Ib Iw mik nhố 9/21/2021 10:22:38 AM
Đăng nhập để chém gió cùng mọi người
  • dvthuat
  • hoàng anh thọ
  • nhungtt0312
  • Xusint
  • tiendat.tran.79
  • babylove_yourfriend_1996
  • thaonguyenxanh1369
  • hoangthao0794
  • zzzz1410
  • watashitipho
  • HọcTạiNhà
  • Cá Hêu
  • peonycherry
  • phanqk1996
  • giothienxung
  • khoaita567
  • nguyentranthuylinhkt
  • maimatmet
  • minh.mai.td
  • quybalamcam
  • m_internet001
  • bangtuyettrangsocola
  • chizjzj
  • vuivequa052
  • haibanh237
  • sweetmilk1412
  • panhhuu
  • mekebinh
  • Nghịch Thuỷ Hàn
  • Lone star
  • LanguaeofLegend
  • huongduong2603
  • i_love_you_12387
  • a ku
  • heohong_congchua
  • impossitable111
  • khanh
  • ๖ۣۜJinღ๖ۣۜKaido
  • huynhhoangphu.10k7
  • namduong2016
  • vycreepers
  • Bảo Phươngg
  • Yurika Yuki
  • tinysweets98
  • Thùy Trang
  • Hàn Thiên Dii
  • ๖ۣۜConan♥doyleღ
  • LeQuynh
  • thithuan27
  • huhunhh
  • ๖ۣۜDemonღ
  • nguyenxinh6295
  • phuc642003
  • diephuynh2009
  • Lê Giang
  • Han Yoon Min
  • ...
  • thuyvan
  • Mặt Trời Bé
  • DoTri69
  • bac1024578
  • Hạ Vân
  • thuong0122
  • nhakhoahoc43
  • tuanngo.apd
  • Đức Vỹ
  • ๖ۣۜCold
  • Lethu031193
  • salihova.eldara