Gäi c¸c c¹nh cña tam gi¸c vu«ng lµ x , y , z ; trong ®ã c¹nh huyÒn lµ z
(x, y, z lµ c¸c sè nguyªn dư¬ng )
Ta cã xy = 2(x+y+z) (1) vµ x2 + y2 = z2 (2)
Tõ (2) suy ra z2 = (x+y)2 -2xy , thay (1) vµo ta cã :
z2 = (x+y)2 - 4(x+y+z)
z2 +4z =(x+y)2 - 4(x+y)
z2 +4z +4=(x+y)2 - 4(x+y)+4
(z+2)2=(x+y-2)2 , suy ra z+2 = x+y-2
z=x+y-4 ; thay vµo (1) ta ®ựîc :
xy=2(x+y+x+y-4)
xy-4x-4y=-8
(x-4)(y-4)=8=1.8=2.4
Tõ ®ã ta t×m ®îc c¸c gi¸ trÞ cña x , y , z lµ :
(x=5,y=12,z=13) ; (x=12,y=5,z=13) ;
(x=6,y=8,z=10) ; (x=8,y=6,z=10)