5
phiếu
2đáp án
1K lượt xem

Nghiên cứu cái này khó quá :v

Cho a,b,c là các số thực không âm thỏa mãn $a+b+c=3.$ Tìm giá trị lớn nhất của biểu thức $P= (a^{2} -ab+b^{2})(b^{2}-bc+c^{2})(c^{2}-ca+a^{2}) $
10
phiếu
3đáp án
2K lượt xem

(10)- Câu hỏi cuối cùng của ngày hôm nay

MOSP $2003$ CMR với mọi số thực dương $a,b,c$, ta luôn có: $\frac{1}{a(b+1)}+\frac{1}{b(c+1)}+\frac{1}{c(a+1)}\geq\frac{3}{\sqrt[3]{abc}(1+\sqrt[3]{abc})}$
5
phiếu
0đáp án
276 lượt xem

(9)

Olympic Toán Trung Quốc $2005$ Cho $\Delta ABC$ nhọn. C/m bđt sau: $\frac{cos^2A}{cosA+1}+\frac{cos^2B}{cosB+1}+\frac{cos^2C}{cosC-1}\geq\frac{1}{2}$
10
phiếu
1đáp án
1K lượt xem

(8)

IMO $2008$: cho các số thực $x,y,z\neq1$ thỏa $xyz=1$. Cmr: $(\frac{x}{x-1})^2+(\frac{y}{y-1})^2+(\frac{z}{z-1})^2\geq 1$
10
phiếu
2đáp án
1K lượt xem

(7)

Olympic Toán Việt Nam 2008:Cho các số thực $x,y,x\geq 0$ khác nhau đôi một. C/m:$\frac{1}{(y-z)^2}+\frac{1}{(z-x)^2}+\frac{1}{(x-y)^2}\geq\frac{4}{xy+yz+zx}$
5
phiếu
0đáp án
294 lượt xem

(6)

Olympic Toán Romania 2008:Tìm hẳng số $k$ lớn nhất để bđt sau đúng: $(a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}-k)\geq k$Trong đó, $a,b,c $...
4
phiếu
0đáp án
436 lượt xem

Bất đẳng thức (1)

Cmr: Với mọi số thực dương $a,b,c,d$ có tổng bình phương bằng $4$, ta đều có: $a^3bc+b^3cd+c^3da+d^3ab\leq 4$
0
phiếu
0đáp án
338 lượt xem

DH 1

Cho $a,b,c>0$ thỏa mãn: $abc=1$. Tìm GTNN của biểu thức:$P=\frac{1}{2a+1}+\frac{1}{2b+1}+\frac{2c}{(2c+1)\sqrt{6c+3}}$
1
phiếu
1đáp án
699 lượt xem

Bất đẳng thức 5( ACAMOPHOMADADY 2016-2017)

Cho $a,b,c\ge 0$ thỏa mãn: $a+b+c=1$. Tìm GTNN,GTLN của biểu thức: $P=(a-b)(b-c)(c-a)$
1
phiếu
3đáp án
1K lượt xem

Giúp mình....!!!!

ABài 1) Cho biết $a^4 + b^4 + c^4 + d^4 = 4abcd$. Cmr: $a=b=c=d$Bài 2) Cho $a,b,c,d$ là độ dài 3 cạnh của một tam giác. CMR:a)...
3
phiếu
1đáp án
923 lượt xem

Cho $a,b,c $ là các số thực dương. CMR $\sqrt{\frac{2a}{a+b}}+\sqrt{\frac{2b}{b+c}}+\sqrt{\frac{2c}{c+a}}\leq 3$

Cho $a,b,c $ là các số thực dương. CMR$\sqrt{\frac{2a}{a+b}}+\sqrt{\frac{2b}{b+c}}+\sqrt{\frac{2c}{c+a}}\leq 3$
6
phiếu
1đáp án
663 lượt xem

một bài toán mk bất chợt gặp trong bài kiểm tra toán.. lp bên

cho $a,b\epsilon R;a+b\neq0$. c/m: $a^2+b^2+(\frac{ab+1}{a+b})^2\geq 2$
5
phiếu
1đáp án
609 lượt xem

bđt (114)

Cho x,y,z là các số thực dương CMR$(xy+yz+zx)[\frac{1}{(x+y)^2}+\frac{1}{(y+z)^2}+\frac{1}{(z+x)^2}]\geq \frac{9}{4}$
4
phiếu
0đáp án
293 lượt xem

Bất Đẳng Thức 4(ACAMOPHOMADADY 2016-2017)

Cho $a,b,c,d$ là các số thực dương thỏa mãn: $2(a+b+c+d)\ge abcd$. Chứng minh rằng:$a^2+b^2+ c^2+d^2\ge abcd$
8
phiếu
1đáp án
1K lượt xem

The Last

Chứng minh $\left( \frac{a}{a+b}\right)^2+\left( \frac{b}{b+c}\right)^2+\left( \frac{c}{c+a}\right)^2 \ge \frac 34$
3
phiếu
0đáp án
339 lượt xem

Bất Đẳng Thức 4( ACAMOPHOMADADY 2016-2017)

Tìm GTNN của biểu thức: $P=(a+5)^2+(b-2)^2+(c-9)^2$ với mọi $a,b,c$ thỏa mãn: $a^2+b^2+c^2-ab-bc-ca=3$
1
phiếu
0đáp án
552 lượt xem

bất đẳng thức-cực trị

5) gọi a,b,c la độ dài 3 cạnh tam giac.cma)a^2(b+c-a)+b^2(c+a-b)+c^29a+b-c)< hoặc = 3abcb)a(b-c)^2=b(c-a)^2+c(a+b)^2>a^3+b^3+c^3
2
phiếu
1đáp án
718 lượt xem

bdt (488)

cho a,b,c là các số thực dương thỏa mãn điều kiện $a+b+c=1$ CMR$\sqrt{\frac{ab}{c}+1}+\sqrt{\frac{bc}{a}+1}+\sqrt{\frac{ca}{b}+1}\geq 2(\sqrt{a}+\sqrt{b}+\sqrt{c})$
1
phiếu
1đáp án
969 lượt xem

bdt (498)

Cho a,b,c,d là các số thực dương thỏa mãn điều kiện $a^2+b^2+c^2+d^2=1$CMR $(1-a)(1-b)(1-c)(1-d)\geq abcd$
1
phiếu
0đáp án
297 lượt xem

bdt (500)

Cho a,b,c là các số thực dương. CMR$(a^2+2ab)^a(b^2+2bc)^b(c^2+2ac)^c\geq (a^2+b^2+c^2)^{a+b+c}$
8
phiếu
2đáp án
1K lượt xem

Bất đẳng thức 3(ACAMOPHOMADADY 2016-2017)

Bài 1:Cho $x,y,z\in (0,1)$.Chứng minh rằng: $(x-x^2)(y-y^2)(z-z^2)\ge (x-yz)(y-zx)(z-xy)$Bài 2: Cho $x,y,z>0$ thỏa mãn:...
6
phiếu
2đáp án
1K lượt xem

Bất Đẳng Thức 2(ACAMOPHOMADADY 2016-2017)

Cho $a,b,c,d\ge 0$. Chứng minh rằng:$a^2+b^2+c^2+d^2+abcd+1\ge ab+bc+cd+da+ac+bd$Mở rộng: Bất đẳng thức Tukervici:Với các số thực không âm...
4
phiếu
0đáp án
467 lượt xem

1 TH đặc biệt

cho $a,b,c\geq 0$. c/m: $2(a^2+b^2+c^2)+abc+8\geq 5(a+b+c)$
3
phiếu
0đáp án
343 lượt xem

bất tiếp

cho $a,b,c \geq 0$ bất kì. tìm hằng số $k$ nhỏ nhất để bđt sau là đúng: $abc+2+k[(a-1)^2+(b-1)^2+(c-1)^2]\geq a+b+c$
3
phiếu
0đáp án
307 lượt xem

Bất Đẳng Thức (ACAMOPHOMADADY 2016-2017)

Cho $a,b$ là các số thực dương thỏa mãn: $a+b=2$. Chứng minh rằng: $a^{a+ab}b^{b+ab}\ge 1$
7
phiếu
1đáp án
894 lượt xem

Bất Động (ACAMOPHOMADADY 2016-2017)

Cho $a,b,c>0$ thỏa mãn: $abc=1$. Chứng minh rằng: $\sum \frac{a^2(b+1)}{b(a^2+ab+b^2)}\ge \frac{6}{a+b+c}$
7
phiếu
2đáp án
1K lượt xem

Ai còn nhớ bất này không????

Cho $\begin{cases}a,b,c>0 \\ a^{2}+b^2+c^2=3 \end{cases}$.Tìm giá trị nhỏ nhất của biểu thức : $P=\sum \frac{a^2+b^2}{a+b}$P/s: Các mem vào...
5
phiếu
0đáp án
389 lượt xem

Thật bất ngờ (Trích ACAMOPHOMADY 2016-2017).

Cho $a,b,c>0$ thỏa mãn: $\sum a^2=3$. Chứng minh rằng: $\sum \frac{a^2+3b^2}{a+b}\ge 3$P/s: ACAMOPHOMADADY là một hội vô tổ chức, không có...
4
phiếu
0đáp án
333 lượt xem

Bất tĩnh (Trích BARCALONABODESHINOBOCHOCHA-ACAMOPHOMADADY 2016-2017)

Cho $a,b,c>0$ thỏa mãn: $abc=1$. Chứng minh rằng: $a^3b^3+b^3c^3+c^3a^3+15\ge 6(a+b+c)$
10
phiếu
2đáp án
1K lượt xem

BĐT Tổng quát(6)

Cho các số $a,b,c>0$ và $x\geq \frac{a+b+c}{3\sqrt{3}}-1$.CMR:$\frac{(b+cx)^{2}}{a}+\frac{(c+ax)^{2}}{b}+\frac{(a+bx)^{2}}{c}\geq abc$
4
phiếu
1đáp án
889 lượt xem

Chứng minh: $\Sigma ab(a+1)>2.$

Cho $\left\{ \begin{array}{l} a,b,c\in [0;1] \\a+b+c=2 \end{array} \right..$ Chứng minh: $\Sigma ab(a+1)\geq 2.$
3
phiếu
1đáp án
639 lượt xem

Bất đẳng thức

Cho các số thực dương $a,b$ thỏa mãn $a^2+b^2+1=3b$.Tìm giá trị nhỏ nhất của $P=\frac{1}{(a+1)^2}+\frac{4}{(b+2)^2}$
12
phiếu
0đáp án
610 lượt xem

BĐT nha mn

CMR:Với mọi số thực $a_1,a_2,....a_{2n}$ và $b_1,b_2,....b_{2n}$.ta có BĐT$\sum_{k=1}^{2n}a_k^{2}\sum_{k=1}^{2n}b_k^{2} -(\sum_{k=1}^{n}(a_{2k} b_{2k-1} -a_{2k-1}b_{2k}))^{2}\geq (\sum_{k=1}^{2n}a_k b_k)^{2} $
9
phiếu
1đáp án
760 lượt xem

giúp e ak

trục mẫu căn thức$\frac{\sqrt{m^{2}+n^{2}}+m}{m-\sqrt{m^{2}+n^{2}}}$
4
phiếu
0đáp án
473 lượt xem
10
phiếu
1đáp án
1K lượt xem

bất nữa

Cho các số thực dương: $a,b,c$. C/m: $\frac{a+b}{\sqrt[3]{a^3+abc}}+\frac{b+c}{\sqrt[3]{b^3+abc}}+\frac{c+a}{\sqrt[3]{c^3+abc}}\geq3\sqrt[3]{4}$
5
phiếu
1đáp án
1K lượt xem

em muon dc lam quan tri vien moi nguoi vo te manh nhe nhat la nguoi mat nick HTN lam thi em vote up cho

cho x,y thoa man $x^{2}+2xy+7(x+y)+2y^{2}+10=0$ tim GTLN ,GTNN cua bthuc P=x+y+3
9
phiếu
1đáp án
694 lượt xem

BĐT Tổng quát(5)

Cho $k$ là 1 số thực thuộc khoảng $\left[ {-1;2} \right]$& $a,b,c$ là 3 số thực đôi một khác nhau.CMR:$\left[ {a^{2}+b^{2}+c^{2}+k(ab+bc+ca)} \right].(\frac{1}{(a-b)^{2}}+\frac{1}{(b-c)^{2}}+\frac{1}{(c-a)^{2}})\geq \frac{9(2-k)}{4}$
12
phiếu
1đáp án
1K lượt xem

BĐT Tổng quát(4)

Cho các só $a,b,c$ không âm thỏa mãn $a+b+c=k$.CMR:$(a^{3}+b^{3})(b^{3}+c^{3})(c^{3}+a^{3})\leq \frac{k^{9}}{256}$P/s:Trình bày bằng nhiều...
11
phiếu
1đáp án
956 lượt xem

BĐT nè mn !

Cho $a,b,c$ là các số thực dương không nhỏ hơn 1.Tìm $Min$P =$\frac{1}{1+a^{6}}+\frac{2}{1+b^{3}}+ \frac{3}{1+c^{2}} +6\sqrt{1+abc(abc-1)}$
8
phiếu
1đáp án
1K lượt xem

dao nay nhieu thanh mat nick wa dang bai cho kiem lai dv day

cho x,y,z la 3 so duong thoa man x+y+z=1 cm $\frac{1-x^{2}}{x+yz}+\frac{1-y^{2}}{y+zx}+\frac{1-z^{2}}{z+xy}\geq 6$
3
phiếu
0đáp án
595 lượt xem

ap dung bdt phu

cho x,y la cac so thuc duong thoa man $0\leq x,y\leq \frac{1}{2}$ cmr $\frac{\sqrt{x} }{1+y}+\frac{\sqrt{y} }{1+x}\leq \frac{2\sqrt{2} }{3}$
6
phiếu
1đáp án
671 lượt xem

What you can do with this inequality?

Cho $x,y,z$ là các số thực dương thỏa mãn: $xy+yz+zx=3$.Chứng minh rằng: $\sum \sqrt{(x^2+3)}\ge x+y+z+3$
6
phiếu
2đáp án
1K lượt xem

bat dang thuc

cho a,b,c>0 va a+b+c=1 cm $\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\leq \frac{3}{2}$
5
phiếu
0đáp án
290 lượt xem

Một bài nữa...

Cho $a,b,c>0$ thỏa mãn: $a^2+b^2+c^2=2(ab+bc+ca)$. Tìm GTNN của biểu thức:$P=a+b+c+\frac{1}{abc}-\frac{9}{a+b+c}$
4
phiếu
1đáp án
762 lượt xem

Tiếp tuyến không dễ dàng.

Cho $a,b,c,d>0$ thỏa mãn: $a+b+c+d=2$. Chứng minh rằng:$\frac{1}{1+3a^2}+\frac{1}{1+3b^2}+\frac{1}{1+3c^2}+\frac{1}{1+3d^2}\ge \frac{16}{7}$
12
phiếu
1đáp án
802 lượt xem

¸.·’*★Unnamed★secret.·’*★*¸.·’

For all nonnegative real numbers $a,b$ and $c,$ no two of which aer zero$.$Prove that: ...
12
phiếu
0đáp án
566 lượt xem

.·’*★Used.·’★to.·’*★.·’*

For all nonnegative real numbers $a,b$ and $c.$ Prove that: ...
2
phiếu
0đáp án
579 lượt xem

Chứng minh bđt holder

Chẳng là thằng b e có giải hộ e 1 bài :) Nhưng đến đoạn bđt holder này e k hiểu gì luôn . E chỉ biết dang phổ biến của holder là...

Trang trước12345...45Trang sau 153050mỗi trang
Chat chit và chém gió
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:46 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:47 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:48 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:49 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: . 11/5/2018 1:39:50 PM
  • hoahoa.nhynhay: ..................... 11/5/2018 1:39:52 PM
  • vinhlyle: hi 11/10/2018 8:03:02 PM
  • ๖ۣۜBossღ: 3:00 AM 11/11/2018 10:17:11 PM
  • quanghungnguyen256: sao wweb cứ đăng nhập mãi nhĩ, k trả lời đc bài viết nữa 11/30/2018 4:35:45 PM
  • quanghungnguyen256: web nát r à 11/30/2018 4:36:19 PM
  • quanghungnguyen256: 11/11/2018 h là 30/11. oi web chắt k ai dùng r hả 11/30/2018 4:36:44 PM
  • quanghungnguyen256: rofum ngon thế mà sao admin lại k nâng cấp nhỡ 11/30/2018 4:37:07 PM
  • nguyenlena2611: talk_to_the_hand 12/24/2018 9:24:22 PM
  • nguyenlena2611: big_grinsurpriseblushing 12/24/2018 9:28:35 PM
  • Việt EL: ^^ 2/16/2019 8:37:21 PM
  • Việt EL: he lô he lô 2/16/2019 8:37:34 PM
  • Việt EL: y sờ e ny guan hiar? 2/16/2019 8:38:15 PM
  • Việt EL: èo 2/16/2019 8:38:32 PM
  • Việt EL: éo có ai 2/16/2019 8:40:48 PM
  • dfgsgsd: Hế lô 2/21/2019 9:52:51 PM
  • dfgsgsd: Lờ ôn lôn huyền ..... 2/21/2019 9:53:01 PM
  • dfgsgsd: Cờ ắc cắc nặng.... 2/21/2019 9:53:08 PM
  • dfgsgsd: Chờ im.... 2/21/2019 9:53:12 PM
  • dfgsgsd: Dờ ai dai sắc ...... 2/21/2019 9:53:23 PM
  • dfgsgsd: ờ ưng nưng sắc.... 2/21/2019 9:53:37 PM
  • dfgsgsd: Mờ inh minh huyền.... đờ ep nặng... trờ ai... quờ a sắc.... đờ i.... 2/21/2019 9:54:11 PM
  • nln: winking 2/28/2019 9:02:14 PM
  • nln: big_grin 2/28/2019 9:02:16 PM
  • nln: smug 2/28/2019 9:02:18 PM
  • nln: talk_to_the_hand 2/28/2019 9:02:20 PM
  • nln: Specialise 2/28/2019 9:51:54 PM
  • nlnl: But they have since become two much-love 2/28/2019 10:03:10 PM
  • dhfh: sad 3/2/2019 9:27:26 PM
  • ๖ۣۜNatsu: allo 3/3/2019 11:39:32 PM
  • ffhfdh: reyeye 3/5/2019 8:53:26 PM
  • ffhfdh: ủuutrr 3/5/2019 8:53:29 PM
  • dgdsgds: ujghjj 3/24/2019 9:12:47 PM
  • ryyty: ghfghgfhfhgfghgfhgffggfhhghfgh 4/9/2019 9:34:48 PM
  • gdfgfd: gfjfjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 4/14/2019 9:53:38 PM
  • gdfgfd: sadsadsadsadsadsad 4/14/2019 9:59:30 PM
  • fdfddgf: trâm anh 4/17/2019 9:40:50 PM
  • gfjggg: a lot of advice is available for college leavers 5/10/2019 9:32:12 PM
  • linhkim2401: big_hug 7/3/2019 9:35:43 AM
  • ddfhfhdff: could you help me do this job 7/23/2019 10:29:49 PM
  • ddfhfhdff: i don't know how to 7/23/2019 10:30:03 PM
  • ddfhfhdff: Why you are in my life, why 7/23/2019 10:30:21 PM
  • ddfhfhdff: Could you help me do this job? I don't know how to get it start 7/23/2019 10:31:45 PM
  • ddfhfhdff: big_grinwhistling 7/23/2019 10:32:50 PM
  • ddfhfhdff: coukd you help me do this job 7/23/2019 10:39:22 PM
  • ddfhfhdff: i don't know how to get it start 7/23/2019 10:39:38 PM
  • huy31012002:9/13/2019 10:43:52 PM
  • huongpha226: hello 11/29/2019 8:22:41 PM
  • hoangthiennhat29: pig 4/2/2020 9:48:11 PM
  • cutein111: . 4/9/2020 9:23:18 PM
  • cutein111: . 4/9/2020 9:23:19 PM
  • cutein111: . 4/9/2020 9:23:20 PM
  • cutein111: . 4/9/2020 9:23:22 PM
  • cutein111: . 4/9/2020 9:23:23 PM
  • cutein111: hello 4/9/2020 9:23:30 PM
  • cutein111: mấy bạn 4/9/2020 9:23:33 PM
  • cutein111: mấy bạn cần người ... k 4/9/2020 9:23:49 PM
  • cutein111: mik sẽ là... của bạn 4/9/2020 9:23:58 PM
  • cutein111: hihi 4/9/2020 9:24:00 PM
  • cutein111: https://www.youtube.com/watch?v=EgBJmlPo8Xw 4/9/2020 9:24:12 PM
  • nhdanfr: Hello 9/17/2020 8:34:26 PM
  • minhthientran594: hi 11/1/2020 10:32:29 AM
  • giocon123fa: hi mọi ngừi :33 1/31/2021 10:31:56 PM
  • giocon123fa: call_me 1/31/2021 10:32:46 PM
  • giocon123fa: không còn ai nữa à? 1/31/2021 10:36:35 PM
  • giocon123fa: toi phải up cái này lên face để mọi người vào chơilaughing) 1/31/2021 10:42:37 PM
  • manhleduc712: hí ae 2/23/2021 8:51:42 AM
  • vaaa: f 3/27/2021 9:40:49 AM
  • vaaa: fuck 3/27/2021 9:40:57 AM
  • L.lawiet: l 6/4/2021 1:26:16 PM
  • tramvin1: . 6/14/2021 8:48:20 PM
  • dothitam04061986: solo ff ko 7/7/2021 2:47:36 PM
  • dothitam04061986: ai muốn xem ngực e ko ạ 7/7/2021 2:49:36 PM
  • dothitam04061986: e nứng 7/7/2021 2:49:52 PM
  • Phương ^.^: ngủ hết rồi ạ? 7/20/2021 10:16:31 PM
  • ducanh170208: hi 8/15/2021 10:23:19 AM
  • ducanh170208: xin chao mọi người 8/15/2021 10:23:39 AM
  • nguyenkieutrinh: hiu lo m.n 9/14/2021 7:30:55 PM
  • nguyenngocha651: Xin chào tất cả các bạn 9/20/2021 3:13:46 PM
  • nguyenngocha651: Có ai onl ko, Ib với mik 9/20/2021 3:14:08 PM
  • nguyenngocha651: Còn ai on ko ạ 9/20/2021 3:21:34 PM
  • nguyenngocha651: ai 12 tủi, sinh k9 Ib Iw mik nhố 9/21/2021 10:22:38 AM
Đăng nhập để chém gió cùng mọi người
  • dvthuat
  • hoàng anh thọ
  • nhungtt0312
  • Xusint
  • tiendat.tran.79
  • babylove_yourfriend_1996
  • thaonguyenxanh1369
  • hoangthao0794
  • zzzz1410
  • watashitipho
  • HọcTạiNhà
  • Cá Hêu
  • peonycherry
  • phanqk1996
  • giothienxung
  • khoaita567
  • nguyentranthuylinhkt
  • maimatmet
  • minh.mai.td
  • quybalamcam
  • m_internet001
  • bangtuyettrangsocola
  • chizjzj
  • vuivequa052
  • haibanh237
  • sweetmilk1412
  • panhhuu
  • mekebinh
  • Nghịch Thuỷ Hàn
  • Lone star
  • LanguaeofLegend
  • huongduong2603
  • i_love_you_12387
  • a ku
  • heohong_congchua
  • impossitable111
  • khanh
  • ๖ۣۜJinღ๖ۣۜKaido
  • huynhhoangphu.10k7
  • namduong2016
  • vycreepers
  • Bảo Phươngg
  • Yurika Yuki
  • tinysweets98
  • Thùy Trang
  • Hàn Thiên Dii
  • ๖ۣۜConan♥doyleღ
  • LeQuynh
  • thithuan27
  • huhunhh
  • ๖ۣۜDemonღ
  • nguyenxinh6295
  • phuc642003
  • diephuynh2009
  • Lê Giang
  • Han Yoon Min
  • ...
  • thuyvan
  • Mặt Trời Bé
  • DoTri69
  • bac1024578
  • Hạ Vân
  • thuong0122
  • nhakhoahoc43
  • tuanngo.apd
  • Đức Vỹ
  • ๖ۣۜCold
  • Lethu031193
  • salihova.eldara