Giúp em mấy bài toán khó
1. Cho x,y,z là các số thực dương. Chứng minh bất đẳng thức:$\frac{2x^2 + xy}{(y + \sqrt{zx} + z)^2} + \frac{2y^2 + yz}{(z + \sqrt{xy} + x)^2} + \frac{2z^2 + zx}{(x + \sqrt{yz} + y)^2} \geq 1$ 2. Cho a,b,c là các số thực dương và
$a+b+c = 3
$. Chứng minh rằng:$2a + \frac{3}{4}b + \sqrt{ab} + \sqrt{bc} + \sqrt[3]{abc} \leq 7 $3. Cho x,y,z là ba số thực dương có tổng bằng 3. Tìm giá trị nhỏ nhất của biểu thức:$P = 3(x^2 + y^2 + z^2) - 2xyz$
Bất đẳng thức
Giúp em mấy bài toán khó
1. Cho x,y,z là các số thực dương. Chứng minh bất đẳng thức:$\frac{2x^2 + xy}{(y + \sqrt{zx} + z)^2} + \frac{2y^2 + yz}{(z + \sqrt{xy} + x)^2} + \frac{2z^2 + zx}{(x + \sqrt{yz} + y)^2} \geq 1$ 2. Cho a,b,c là các số thực dương và a+b+c = 3. Chứng minh rằng:$2a + \frac{3}{4}b + \sqrt{ab} + \sqrt{bc} + \sqrt[3]{abc} \leq 7 $3. Cho x,y,z là ba số thực dương có tổng bằng 3. Tìm giá trị nhỏ nhất của biểu thức:$P = 3(x^2 + y^2 + z^2) - 2xyz$
Bất đẳng thức
Giúp em mấy bài toán khó
1. Cho x,y,z là các số thực dương. Chứng minh bất đẳng thức:$\frac{2x^2 + xy}{(y + \sqrt{zx} + z)^2} + \frac{2y^2 + yz}{(z + \sqrt{xy} + x)^2} + \frac{2z^2 + zx}{(x + \sqrt{yz} + y)^2} \geq 1$ 2. Cho a,b,c là các số thực dương và
$a+b+c = 3
$. Chứng minh rằng:$2a + \frac{3}{4}b + \sqrt{ab} + \sqrt{bc} + \sqrt[3]{abc} \leq 7 $3. Cho x,y,z là ba số thực dương có tổng bằng 3. Tìm giá trị nhỏ nhất của biểu thức:$P = 3(x^2 + y^2 + z^2) - 2xyz$
Bất đẳng thức