cho$: a,b,c>0;\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq1$ t
ìm$ Max:P=\frac{1}{\sqrt{a^2+b^2}}+\frac{1}{\sqrt{b^2+c^2}}+\frac{1}{\sqrt{c^2+a^2}}$cho$: a,b,c>0;\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq1$tìm$ Max:P=\frac{1}{\sqrt{a^2+b^2}}+\frac{1}{\sqrt{b^2+c^2}}+\frac{1}{\sqrt{c^2+a^2}}$
Bất đẳng thức Cô-si
BĐT t
iếpcho$: a,b,c>0;\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq1$tìm$ Max:P=\frac{1}{\sqrt{a^2+b^2}}+\frac{1}{\sqrt{b^2+c^2}}+\frac{1}{\sqrt{c^2+a^2}}$
Bất đẳng thức Cô-si
cho$: a,b,c>0;\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq1$ t
ìm$ Max:P=\frac{1}{\sqrt{a^2+b^2}}+\frac{1}{\sqrt{b^2+c^2}}+\frac{1}{\sqrt{c^2+a^2}}$cho$: a,b,c>0;\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq1$tìm$ Max:P=\frac{1}{\sqrt{a^2+b^2}}+\frac{1}{\sqrt{b^2+c^2}}+\frac{1}{\sqrt{c^2+a^2}}$
Bất đẳng thức Cô-si