BĐT về ....
chứng minh BĐT sau bằng ít nhất hai cách.....vs $a_{1},a_{2},...,a_{n}$ và $b_{1},b_{2},...,b_{n}$ là hai bộ số thực....BĐT:$\sqrt{a^{2}_{1}+b_{1}^{2}}+...+\sqrt{a_{n}^{2}+b_{n}^{2}}\geq \sqrt{(a_{1}+...+a_{n})^{2}+(b_{1}+...+b_{n})^{2}}$
Bất đẳng thức
BĐT về ....
chứng minh BĐT sau bằng ít nhất hai cách.....vs $a_{1},a_{2},...,a_{n}$ và $b_{1},b_{2},...,b_{n}$ là hai bộ số thực....BĐT:$\sqrt{a^{2}_{1}+b_{1}^{2}}+...+\sqrt{a_{n}^{2}+b_{n}^{2}}\geq \sqrt{(a_{1}+...+a_{n})^{2}+(b_{1}+...+b_{n})^{2}}$
nhân tiện cho mk hỏi tí admin ơi...sao mỗi ngày danh vọng cứ vượt quá 200 là mọi người vote ko đk nữa ạ..???nếu không phải thì nhờ xem lại giúp mình nhé.......
Bất đẳng thức
BĐT về ....
chứng minh BĐT sau bằng ít nhất hai cách.....vs $a_{1},a_{2},...,a_{n}$ và $b_{1},b_{2},...,b_{n}$ là hai bộ số thực....BĐT:$\sqrt{a^{2}_{1}+b_{1}^{2}}+...+\sqrt{a_{n}^{2}+b_{n}^{2}}\geq \sqrt{(a_{1}+...+a_{n})^{2}+(b_{1}+...+b_{n})^{2}}$
Bất đẳng thức