Tìm max: $S=\sum_{k=1}^{n}(a-a_1)(a-a_2)........(a-a_{k-1})a_k(a-a_{k+1}
).....(a-a_n) $
Cho $\left\{ \begin{array}{l} a>0\\ a_1;a_2;....;a_n \in [0;a] \end{array} \right..$ Tìm max: $S=\sum_{k=1}^{n}(a-a_1)(a-a_2)........(a-a_{k-1})a_k(a-a_{k+1}
).....(a-a_n) $
Bất đẳng thức
Tìm max: $S=\sum_{k=1}^{n}(a-a_1)(a-a_2)........(a-a_{k-1})a_k(a-a_{k+1}.....(a-a_n) $
Cho $\left\{ \begin{array}{l} a>0\\ a_1;a_2;....;a_n \in [0;a] \end{array} \right..$ Tìm max: $S=\sum_{k=1}^{n}(a-a_1)(a-a_2)........(a-a_{k-1})a_k(a-a_{k+1}.....(a-a_n) $
Bất đẳng thức
Tìm max: $S=\sum_{k=1}^{n}(a-a_1)(a-a_2)........(a-a_{k-1})a_k(a-a_{k+1}
).....(a-a_n) $
Cho $\left\{ \begin{array}{l} a>0\\ a_1;a_2;....;a_n \in [0;a] \end{array} \right..$ Tìm max: $S=\sum_{k=1}^{n}(a-a_1)(a-a_2)........(a-a_{k-1})a_k(a-a_{k+1}
).....(a-a_n) $
Bất đẳng thức