c.Ta có:$\cos\frac{A}{2}+\cos\frac{B}{2}=2\cos(\frac{A}{4}+\frac{B}{4})\cos(\frac{A}{4}-\frac{B}{4})\le2\cos(\frac{A}{4}+\frac{B}{4})$$\cos\frac{C}{2}+\cos\frac{\pi}{6}=2\cos(\frac{C}{4}+\frac{\pi}{12})\cos(\frac{C}{4}-\frac{\pi}{12})\le2\cos(\frac{C}{4}+\frac{\pi}{12})$
$\cos(\frac{A}{4}+\frac{B}{4})+\cos(\frac{C}{4}+\frac{\pi}{12})=2\cos\frac{\pi}{6}\cos(\frac{A}{8}+\frac{B}{8}-\frac{C}{8}-\frac{\pi}{24})\le2\cos\frac{\pi}{6}$Suy ra: $\cos\frac{A}{2}+\cos\frac{B}{2}+\cos\frac{C}{2}\le3\cos\frac{\pi}{6}=\frac{3\sqrt3}{2}$Ta có:
$\frac{\displaystyle\cos\frac{A}{2}}{1+\cos
A}+\frac{\displaystyle\cos\frac{B}{2}}{1+\cos
B}+\frac{\displaystyle\cos\frac{C}{2}}{1+\cos C}$$=\frac{1}{\displaystyle 2\cos\frac{A}{2}}+\frac{1}{\displaystyle 2\cos\frac{B}{2}}+\frac{1}{\displaystyle 2\cos\frac{C}{2}}$$\ge\frac{9}{\displaystyle 2\cos\frac{A}{2}+2\cos\frac{B}{2}+2\cos\frac{C}{2}}\ge\sqrt3$Dấu bằng xảy ra khi: $\Delta ABC$ đều.
c.Ta có:$\cos\
dfrac{A}{2}+\cos\
dfrac{B}{2}=2\cos(\
dfrac{A}{4}+\
dfrac{B}{4})\cos(\
dfrac{A}{4}-\
dfrac{B}{4})\le2\cos(\
dfrac{A}{4}+\
dfrac{B}{4})$$\cos\
dfrac{C}{2}+\cos\
dfrac{\pi}{6}=2\cos(\
dfrac{C}{4}+\
dfrac{\pi}{12})\cos(\
dfrac{C}{4}-\
dfrac{\pi}{12})\le2\cos(\
dfrac{C}{4}+\
dfrac{\pi}{12})$$\cos(\
dfrac{A}{4}+\
dfrac{B}{4})+\cos(\
dfrac{C}{4}+\
dfrac{\pi}{12})=2\cos\
dfrac{\pi}{6}\cos(\
dfrac{A}{8}+\
dfrac{B}{8}-\
dfrac{C}{8}-\
dfrac{\pi}{24})\le2\cos\
dfrac{\pi}{6}$Suy ra: $\cos\
dfrac{A}{2}+\cos\
dfrac{B}{2}+\cos\
dfrac{C}{2}\le3\cos\
dfrac{\pi}{6}=\
dfrac{3\sqrt3}{2}$Ta có:
$\
dfrac{\cos\
dfrac{A}{2}}{1+\cos
A}+\
dfrac{\cos\
dfrac{B}{2}}{1+\cos
B}+\
dfrac{\cos\
dfrac{C}{2}}{1+\cos C}$$=\
dfrac{1}{2\cos\
dfrac{A}{2}}+\
dfrac{1}{2\cos\
dfrac{B}{2}}+\
dfrac{1}{2\cos\
dfrac{C}{2}}$$\ge\
dfrac{9}{2\cos\
dfrac{A}{2}+2\cos\
dfrac{B}{2}+2\cos\
dfrac{C}{2}}\ge\sqrt3$Dấu bằng xảy ra khi: $\Delta ABC$ đều.