BPT ⇔22x<3.2√x+x+22√x+2⇔1<3.2√x−x+22√x−2x+2⇔3.2√x−x+4.22(√x−x)−1>0Đặt t=2√x−x>0 thì 4x≤3.2x√+x+41+x√ BPT ⇔4t2+3t−1>0⇔(t+1)(4t−1)>0⇔t>2−2⇔2√x−x>2−2⇔√x−x>−2⇔x−√x−2<0⇔(√x−2)(√x+1)<0$\Leftrightarrow \sqrt{x}<2\Leftrightarrow \boxed{0 \le x <4.}$
BPT
⇔22x<3.2√x+x+22√x+2⇔1<3.2√x−x+22√x−2x+2⇔3.2√x−x+4.22(√x−x)−1>0Đặt
t=2√x−x>0 thì 4x≤3.2x√+x+41+x√ BPT
⇔4t2+3t−1>0⇔(t+1)(4t−1)>0⇔t>2−2⇔2√x−x>2−2$\Leftrightarrow \sqrt{x}
-x>{-2}\Leftrightarrow x-\sqrt{x}-2<0\Leftrightarrow (\sqrt{x}-2)(\sqrt{x}+1)<0$$\Leftrightarrow \sqrt{x}<2\Leftrightarrow \boxed{0 \le x <4}$