Câu 1$y'=[(\sqrt{x}+1)(\frac{1}{\sqrt{x}}-1)]' $$y'=(\sqrt{x}+1)'(\frac{1}{\sqrt{x}}-1) + (\sqrt{x}+1)(\frac{1}{\sqrt{x}}-1)' $$y'=(\frac{1}{2\sqrt{x}})(\frac{1}{\sqrt{x}}-1) + (\sqrt{x}+1)(-\frac{(\sqrt{x})'}{x})$$y'=(\frac{1}{2\sqrt{x}})(\frac{1}{\sqrt{x}}-1) + (\sqrt{x}+1)(-\frac{1}{2x\sqrt{x}})$
Câu 1$y'=[(\sqrt{x}+1)(\frac{1}{\sqrt{x}}-1)]' $$y'=(\sqrt{x}+1)'(\frac{1}{\sqrt{x}}-1) + (\sqrt{x}+1)(\frac{1}{\sqrt{x}}-1)' $$y'=(\frac{1}{2\sqrt{x}})(\frac{1}{\sqrt{x}}-1) + (\sqrt{x}+1)(-\frac{1}{2\sqrt{x}})$$y'=(\frac{1}{2\sqrt{x}})(\frac{1}{\sqrt{x}}-\sqrt{x}-2)$
Câu 1$y'=[(\sqrt{x}+1)(\frac{1}{\sqrt{x}}-1)]' $$y'=(\sqrt{x}+1)'(\frac{1}{\sqrt{x}}-1) + (\sqrt{x}+1)(\frac{1}{\sqrt{x}}-1)' $$y'=(\frac{1}{2\sqrt{x}})(\frac{1}{\sqrt{x}}-1) + (\sqrt{x}+1)(-\frac{
(\sqrt{x}
)'}{x})$$y'=(\frac{1}{2\sqrt{x}})(\frac{1}{\sqrt{x}}-
1) + (\sqrt{x}
+1)(-
\frac{1}{2
x\sqrt{x}})$