Gọi $(C)$ có tâm $I(a;b)$ bán kính R$IA^2=(a-1)^2 + (b-2)^2$$IB^2=(a-3)^2 + (b-4)^2$$d(I,d)=I(3a+b-3I)/ \sqrt{10} $$\begin{cases}IA^{2}=IB^{2} \\ IA^{}= d(I,d)\end{cases}$$\begin{cases}a+b=5 \\ 10(a^{2}+b^{2} -2a-4b+5)= \left| {3a+b-3} \right|\end{cases}$$\begin{cases}a=5-b \\ b=\frac{7}{2} hoặc b=1 \end{cases}$$a=\frac{3}{2} ; b=\frac{7}{2} \Rightarrow (C): (x-\frac{3}{2} )^2 + (y-\frac{7}{2} )^2 = \frac{\sqrt{10} }{2} $$a= 4 ; b=1 \Rightarrow (C): (x-4)^2 + (y-1)^2 = \sqrt{10} $
Gọi $(C)$ có tâm $I(a;b)$ bán kính R$IA^2=(a-1)^2 + (b-2)^2$$IB^2=(a-3)^2 + (b-4)^2$$d(I,d)=I(3a+b-3I)/ \sqrt{1} $$\begin{cases}IA^{2}=IB^{2} \\ IA^{}= d(I,d)\end{cases}$$\begin{cases}a+b=5 \\ 10(a^{2}+b^{2} -2a-4b+5)= \left| {3a+b-3} \right|\end{cases}$$\begin{cases}a=5-b \\ b=\frac{7}{2} hoặc b=1 \end{cases}$$a=\frac{3}{2} ; b=\frac{7}{2} \Rightarrow (C): (x-\frac{3}{2} )^2 + (y-\frac{7}{2} )^2 = \frac{\sqrt{10} }{2} $$a= 4 ; b=1 \Rightarrow (C): (x-4)^2 + (y-1)^2 = \sqrt{10} $
Gọi $(C)$ có tâm $I(a;b)$ bán kính R$IA^2=(a-1)^2 + (b-2)^2$$IB^2=(a-3)^2 + (b-4)^2$$d(I,d)=I(3a+b-3I)/ \sqrt{1
0} $$\begin{cases}IA^{2}=IB^{2} \\ IA^{}= d(I,d)\end{cases}$$\begin{cases}a+b=5 \\ 10(a^{2}+b^{2} -2a-4b+5)= \left| {3a+b-3} \right|\end{cases}$$\begin{cases}a=5-b \\ b=\frac{7}{2} hoặc b=1 \end{cases}$$a=\frac{3}{2} ; b=\frac{7}{2} \Rightarrow (C): (x-\frac{3}{2} )^2 + (y-\frac{7}{2} )^2 = \frac{\sqrt{10} }{2} $$a= 4 ; b=1 \Rightarrow (C): (x-4)^2 + (y-1)^2 = \sqrt{10} $