2. Tu he co x,y>0(1)hpt<=>{3yx2=x2+23xy2=y2+2 =>3(x−y)(3xy+x+y)=0 <=>x=ydo(1)Tu do de dang co x=y=14. Tru 2 ve pt co √x2+9−√y2+9+y−x=0<=>x2−y2√x2+9+√y2+9+y−x=0$<=>(x-y)(\frac{x+y}{\sqrt{x^2+9}+\sqrt{y^2+9}-1})=0Vix<\sqrt{x^2+9} va y<\sqrt{y^2+9}Nenx+y<\sqrt{x^2+9}+\sqrt{y^2+9}=>\frac{x+y}{\sqrt{x^2+9}+\sqrt{y^2+9}}<1Tudosuyrax=yDedangtimdkx=y=4$
2. Tu he co x,y>0(1)hpt<=>{3yx2=x2+23xy2=y2+2 =>3(x−y)(3xy+x+y)=0 <=>x=ydo(1)Tu do de dang co x=y=14. Tru 2 ve pt co √x2+9−√y2+9+y−x=0<=>x2−y2√x2+9+√y2+9+y−x=0<=>(x−y)(x+y√x2+9+√y2+9−1=0Vi x<√x2+9vay<√y2+9Nen x+y<√x2+9+√y2+9=>x+y√x2+9+√y2+9<1Tu do suy ra x=yDe dang tim dk x=y=4
2. Tu he co
x,y>0(1)hpt<=>{3yx2=x2+23xy2=y2+2 =>3(x−y)(3xy+x+y)=0 <=>x=ydo(1)Tu do de dang co
x=y=14. Tru 2 ve pt co
√x2+9−√y2+9+y−x=0<=>x2−y2√x2+9+√y2+9+y−x=0$<=>(x-y)(\frac{x+y}{\sqrt{x^2+9}+\sqrt{y^2+9}-1}
)=0
Vix<\sqrt{x^2+9} va y<\sqrt{y^2+9}
Nenx+y<\sqrt{x^2+9}+\sqrt{y^2+9}=>\frac{x+y}{\sqrt{x^2+9}+\sqrt{y^2+9}}<1
Tudosuyrax=y
Dedangtimdkx=y=4$