I=2√2∫√314√x2+1.2lnx.2xdx=2√2∫√314√1+x2lnx2dx2Dat t=√x2+1→t2=x2+1→2tdt=dx2doi can x√32√2 t23I=123∫2t2ln(t2−1)dtDat {u=ln(t2−1)dv=t2dt→{dt=2tt2−1dtv=13t3
I=2√2∫√314√x2+1.2lnx.2xdx=2√2∫√314√1+x2lnx2dx2Dat
t=√x2+1→t2=x2+1→2tdt=dx2doi can
x√32√2 t23I=123∫2t2ln(t2−1)dtDat $\begin{cases}u=ln(t^2-1) \\dv= t^2dt \end{cases}\rightarrow \begin{cases}dt=\frac{2t}{t^2-1}dt \\ v=\frac13t^3 \end{cases}
.....$