Câu a.$\mathop {\lim }\limits_{x \to \frac{\pi}{2}}\frac{1-sinx}{(\frac{\pi}{2}-x)^2}$=$\mathop {\lim }\limits_{x \to \frac{\pi}{2}}\frac{(cos\frac{x}{2}-sin\frac{x}{2})^2}{(\frac{\pi}{2}-x)^2}$=$\mathop {\lim }\limits_{x \to \frac{\pi}{2}}\frac{2sin^2[\frac{1}{2}(\frac{\pi}{2}-x)]}{(\frac{\pi}{2}-x)^2}$=$\mathop {\lim }\limits_{x \to \frac{\pi}{2}}\frac{\frac{1}{2}(\frac{\pi}{2}-x)^2.[\frac{sin[\frac{1}{2}(\frac{\pi}{2}-x)}{\frac{1}{2}(\frac{\pi}{2}-x)}]^2}{(\frac{\pi}{2}-x)^2}$=$\frac{1}{2}$
Câu a.$\mathop {\lim }\limits_{x \to \frac{\pi}{2}}\frac{1-sinx}{(\frac{\pi}{2}-x)^2}$=$\mathop {\lim }\limits_{x \to \frac{\pi}{2}}\frac{(cos\frac{x}{2}-sin\frac{x}{2})^2}{(\frac{\pi}{2}-x)^2}$=$\mathop {\lim }\limits_{x \to \frac{\pi}{2}}\frac{2sin^2[\frac{1}{2}(\frac{\pi}{2}-x)]}{(\frac{\pi}{2}-x)^2}$=$\mathop {\lim }\limits_{x \to \frac{\pi}{2}}\frac{\frac{1}{2}(\frac{\pi}{2}-x)^2.(\frac{sin[\frac{1}{2}(\frac{\pi}{2}-x]}{\frac{1}{2}(\frac{\pi}{2}-x)})^2}{(\frac{\pi}{2}-x)^2}$=$\frac{1}{2}$
Câu a.$\mathop {\lim }\limits_{x \to \frac{\pi}{2}}\frac{1-sinx}{(\frac{\pi}{2}-x)^2}$=$\mathop {\lim }\limits_{x \to \frac{\pi}{2}}\frac{(cos\frac{x}{2}-sin\frac{x}{2})^2}{(\frac{\pi}{2}-x)^2}$=$\mathop {\lim }\limits_{x \to \frac{\pi}{2}}\frac{2sin^2[\frac{1}{2}(\frac{\pi}{2}-x)]}{(\frac{\pi}{2}-x)^2}$=$\mathop {\lim }\limits_{x \to \frac{\pi}{2}}\frac{\frac{1}{2}(\frac{\pi}{2}-x)^2.
[\frac{sin[\frac{1}{2}(\frac{\pi}{2}-x
)}{\frac{1}{2}(\frac{\pi}{2}-x)}
]^2}{(\frac{\pi}{2}-x)^2}$=$\frac{1}{2}$