1a)
$L=\mathop {\lim }\limits_{x \to -\infty
}\frac{x^5(\frac{-1}{3}+\frac{7}{x^2}-\frac{11}{x^5})}{x^5(\frac{3}{4}-\frac{1}{x}+\frac{2}{x^5})}=\mathop
{\lim }\limits_{x \to -\infty }\frac{-\frac{1}{3}+\frac{7}{x^2}-\frac{11}{x^5}}{\frac{3}{4}-\frac{1}{x}+\frac{2}{x^4}}=-4$
1a)
$L=\mathop {\lim }\limits_{x \to
+\infty
}\frac{x^5(\frac{-1}{3}+\frac{7}{x^2}-\frac{11}{x^5})}{x^5(\frac{3}{4}-\frac{1}{x}+\frac{2}{x^5})}=\mathop
{\lim }\limits_{x \to
+\infty }\frac{-\frac{1}{3}+\frac{7}{x^2}-\frac{11}{x^5}}{\frac{3}{4}-\frac{1}{x}+\frac{2}{x^4}}=-4$