ta có $\frac{1}{\sqrt{k}} = \frac{2}{\sqrt{k} + \sqrt{k}} > \frac{2}{\sqrt{k+1}+\sqrt{k}} =2(\sqrt{k+1}-\sqrt{k})\Rightarrow\frac{1}{\sqrt{2}}...>17tương tự \frac{1}{\sqrt{k}} < 2(\sqrt{k}-\sqrt{k-1}) \Rightarrow\frac{1}{\sqrt{2}}+...<18$
ta có $\frac{1}{\sqrt{k}}
$ =
$\frac{2}{\sqrt{k} + \sqrt{k}}
$ >
$\frac{2}{\sqrt{k+1}+\sqrt{k}}
$ =
$2(\sqrt{k+1}-\sqrt{k})\Rightarrow\frac{1}{\sqrt{2}}...
$>17tương tự
$\frac{1}{\sqrt{k}}
$ <
$2(\sqrt{k}-\sqrt{k-1}) \Rightarrow\frac{1}{\sqrt{2}}+...
$<18