$a^2+1\ge2a;b^2+2\ge 2\sqrt2b;c^2+8\ge4\sqrt2c\\=>(a^2+1)(b^2+2)(c^2+8)\ge32abc\\=>pt$ $(1)<=>a=1;b=\sqrt2;c=2\sqrt2$
$a^2+1\ge2a;b^2+2\ge 2\sqrt2b;c^2+8\ge4\sqrt2c\\=>(a^2+1)(b^2+2)(c^2+8)\ge32abc\\=>pt$ có nghiệm $<=>a=1;b=\sqrt2;c=2\sqrt2$
$a^2+1\ge2a;b^2+2\ge 2\sqrt2b;c^2+8\ge4\sqrt2c\\=>(a^2+1)(b^2+2)(c^2+8)\ge32abc\\=>pt$ $
(1)<=>a=1;b=\sqrt2;c=2\sqrt2$