x^2.y+2x.y<=> xy.(x+y)+y^2.(x+y)=2<=>(x+y)(xy+y^2)=2=2(x+y)(x^2-xy+y^2)=>xy+y^2=2(x^2-xy+y^2 )<=>2.x^2-3xy+y^2=0
$x^2.y
$+2x.y<=> xy.(x+y)+
$y^2
$.(x+y)=2<=>(x+y)(xy+
$y^2
$)=2=2(x+y)(
$x^2-xy+y^2)
$=>
$xy+y^2=2(x^2-xy+y^2 )
$<=>
$2.x^2-3xy+y^2
$=0