$C=\frac{98^{99}+1}{98^{89}+1}>\frac{98^{99}+98}{98^{89}+98}=\frac{98(98^{98}+1)}{98(98^{88}+1)}=\frac{98^{98}+1}{98^{88}+1}=D$
$C=\frac{98^{99}+1}{98^{89}+1}>\frac{98^{99}+98}{98^{89}+98}=\frac{98(98^{98}+1)}{98(98^{98}+1)}=\frac{98^{98}+1}{98^{88}+1}=D$
$C=\frac{98^{99}+1}{98^{89}+1}>\frac{98^{99}+98}{98^{89}+98}=\frac{98(98^{98}+1)}{98(98^{
88}+1)}=\frac{98^{98}+1}{98^{88}+1}=D$