Theo BĐT AM-GM cho 2 số thực dương ta cóbc(b2+c2)" role="presentation" style="font-size: 12.8px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">bc(b2+c2)−−−−−−−−−√bc(b2+c2) = 12" role="presentation" style="font-size: 12.8px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">12√12.2bc(b2+c2)" role="presentation" style="font-size: 12.8px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">2bc(b2+c2)−−−−−−−−−−√2bc(b2+c2)≤" role="presentation" style="font-size: 12.8px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">≤≤ 2bc22" role="presentation" style="font-size: 12.8px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">2bc22√2bc22+b222" role="presentation" style="font-size: 12.8px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">b222√b222+c222" role="presentation" style="font-size: 12.8px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">c222√c222 =(b+c)222" role="presentation" style="font-size: 12.8px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">(b+c)222√(b+c)222⇒a(b+c)bc(b2+c2)≥22a(b+c)(b+c)2=22ab+c" role="presentation" style="font-size: 16px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">⇒a(b+c)bc(b2+c2)−−−−−−−−−√≥22√a(b+c)(b+c)2=22√ab+c⇒a(b+c)bc(b2+c2)≥22a(b+c)(b+c)2=22ab+ctương tự:b(c+a)ca(c2+a2)≥22bc+a" role="presentation" style="font-size: 16px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">b(c+a)ca(c2+a2)−−−−−−−−−√≥22√bc+ab(c+a)ca(c2+a2)≥22bc+a c(a+b)ab(a2+b2)≥22ca+b" role="presentation" style="font-size: 16px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">c(a+b)ab(a2+b2)−−−−−−−−−√≥22√ca+bc(a+b)ab(a2+b2)≥22ca+bcộng cả 3 vế lại ta có:$\frac{a(b+c)}{\sqrt{bc(b^{2}+c^{2})}}+\frac{b(c+a)}{\sqrt{ca(c^{2}+a^{2})}}\geq \frac{2\sqrt{2}b}{c+a} +\frac{c(a+b)}{\sqrt{ab(a^{2}+b^{2})}}\geq\frac{2\sqrt{2}c}{a+b}\geq 2\sqrt{2}(\frac{a}{b+c}+\frac{b}{c+a} + \frac{c}{a+b})\geq2\sqrt{2}.\frac{3}{2}=3\sqrt{2}$bc(b2+c2)−−−−−−−−−√+b(c+a)ca(c2+a2)−−−−−−−−−√≥22√bc+a+c(a+b)ab(a2+b2)−−−−−−−−−√≥22√ca+b≥22√(ab+c+bc+a+ca+b)≥22√.32=32bc(b2+c2)−−−−−−−−−√+b(c+a)ca(c2+a2)−−−−−−−−−√≥22√bc+a+c(a+b)ab(a2+b2)−−−−−−−−−√≥22√ca+b≥22√(ab+c+bc+a+ca+b)≥22√.32=32a(b+c)bc(b2+c2)+b(c+a)ca(c2+a2)≥22bc+a+c(a+b)ab(a2+b2)≥22ca+b≥22(ab+c+bc+a+ca+b)≥22.32=32" role="presentation" style="font-size: 16px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">a(b+c)bc(b2+c2)−−−−−−−−−√+b(c+a)ca(c2+a2)−−−−−−−−−√≥22√bc+a+c(a+b)ab(a2+b2)−−−−−−−−−√≥22√ca+b≥22√(ab+c+bc+a+ca+b)≥22√.32=32√bc(b2+c2)−−−−−−−−−√+b(c+a)ca(c2+a2)−−−−−−−−−√≥22√bc+a+c(a+b)ab(a2+b2)−−−−−−−−−√≥22√ca+b≥22√(ab+c+bc+a+ca+b)≥22√.32=32√
Theo BĐT AM-GM cho 2 số thực dương ta cóbc(b2+c2)" role="presentation" style="font-size: 12.8px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;"
>bc(b2+c2)−−−−−−−−−√bc(b2+c2) = 12" role="presentation" style="font-size: 12.8px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;"
>12√12.2bc(b2+c2)" role="presentation" style="font-size: 12.8px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;"
>2bc(b2+c2)−−−−−−−−−−√2bc(b2+c2)
≤" role="presentation" style="font-size: 12.8px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;"
>≤≤ 2bc22" role="presentation" style="font-size: 12.8px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;"
>2bc22√2bc22+b222" role="presentation" style="font-size: 12.8px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;"
>b222√b222+c222" role="presentation" style="font-size: 12.8px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;"
>c222√c222 =(b+c)222" role="presentation" style="font-size: 12.8px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;"
>(b+c)222√(b+c)222
⇒a(b+c)bc(b2+c2)
≥22a(b+c)(b+c)2=22ab+c" role="presentation" style="font-size: 16px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;"
>⇒a(b+c)bc(b2+c2)−−−−−−−−−√≥22√a(b+c)(b+c)2=22√ab+c⇒a(b+c)bc(b2+c2)≥22a(b+c)(b+c)2=22ab+ctương tự:b(c+a)ca(c2+a2)
≥22bc+a" role="presentation" style="font-size: 16px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;"
>b(c+a)ca(c2+a2)−−−−−−−−−√≥22√bc+ab(c+a)ca(c2+a2)≥22bc+a c(a+b)ab(a2+b2)
≥22ca+b" role="presentation" style="font-size: 16px; display: inline; line-height: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;"
>c(a+b)ab(a2+b2)−−−−−−−−−√≥22√ca+bc(a+b)ab(a2+b2)≥22ca+bcộng cả 3 vế lại ta có:c
ộng c
ả 3 vế lại ta
c
ó:a(b+c)bc(b2+c2)+b(c+a)ca(c2+a2)≥22bc+a+c(a+b)ab(a2+b2)≥22ca+b≥22(ab+c+bc+a+ca+b)≥22.32=32" role="presentation" style="font-size: 1
2.8px; position: relative;">a(b+c)bc(b2+c2)−−−−−−−−−√+b(c+a)ca(c2+a2)−−−−−−−−−√≥22√bc+a+c(a+b)ab(a2+b2)−−−−−−−−−√≥22√ca+b≥22√(ab+c+bc+a+ca+b)≥22√.32=32bc(b2+c2)−−−−−−−−−√+b(c+a)ca(c2+a2)−−−−−−−−−√≥22√bc+a+c(a+b)ab(a2+b2)−−−−−−−−−√≥22√ca+b≥22√(ab+c+bc+a+ca+b)≥22√.32=32√