a + b = p ; ab = -1
c + d = -q ; cd = 1
VT = (a^2 - ad - ac + cd).(b^2 - bc - bd + cd) = [ a^2 - a(c + d) +1 ].[ b^2 -b(c + d) +1 ]
= ( a^2 + aq + 1).( b^2 + bq + 1) = (ab)^2 + a^2bq + a^2 + ab^2q + abq^2 + aq + b^2 + bq +1
= 2 + a^2bq + ab^2q + abq^2 + (a+b)^2 - 2ab + q(a+b)
= 2 - aq - bq - q^2 + p^2 +2 + pq
= 4 - q(a+b) + p^2 - q^2 + pq
= 4 - pq + p^2 - q^2 + pq
= p^2 - q^2 +4(đpcm)
$a + b = p ; ab = -1
$$c + d = -q ; cd = 1
$$VT = (a^2 - ad - ac + cd).(b^2 - bc - bd + cd) = [ a^2 - a(c + d) +1 ].[ b^2 -b(c + d) +1 ]
$$= ( a^2 + aq + 1).( b^2 + bq + 1) = (ab)^2 + a^2bq + a^2 + ab^2q + abq^2 + aq + b^2 + bq +1
$$= 2 + a^2bq + ab^2q + abq^2 + (a+b)^2 - 2ab + q(a+b)
$$= 2 - aq - bq - q^2 + p^2 +2 + pq
$$= 4 - q(a+b) + p^2 - q^2 + pq
$$= 4 - pq + p^2 - q^2 + pq
$$= p^2 - q^2 +4
$(đpcm)