Gọi $K,J$ là giao điểm của $EF$ với $CD,CB$$\triangle AFB=\triangle BEC\Rightarrow FB$ _|_ $EC$(1)$\triangle ADE=\triangle DCF\Rightarrow DE$ _|_$FC$(2)ta chứng Minh được M là trực tâm $\triangle CKJ$$\Rightarrow CM$ _|_ $EF$(3)từ (1),(2),(3) $\Rightarrow DE,BF,CM$ là ba đường cao $\triangle CEF$ nên đồng quy
Gọi $K,J$ là giao điểm của $EF$ với $CD,CB$$\triangle AFB=\triangle BEC\Rightarrow FB$ _|_ $EC$(1)$\triangle ADE=\triangle DCF\Rightarrow DE$ _|_$FC$(2)ta chứng Minh được M là trực tâm $\triangle CKJ$$\Rightarrow CM$ _|_ $EF$(3)từ (1),(2),(3) $\Rightarrow DE,BF,CM$ là ba đường cao $\triangle CEF$ nên đồng quy
Gọi $K,J$ là giao điểm của $EF$ với $CD,CB$$\triangle AFB=\triangle BEC\Rightarrow FB$ _|_ $EC$(1)$\triangle ADE=\triangle DCF\Rightarrow DE$ _|_$FC$(2)ta chứng Minh được M là trực tâm $\triangle CKJ$$\Rightarrow CM$ _|_ $EF$(3)từ (1),(2),(3) $\Rightarrow DE,BF,CM$ là ba đường cao $\triangle CEF$ nên đồng quy