c,Đk: sin2x # 0<=>x # kpi/2pt<=>cosx+(can3)sinx=8sin^2xcosx<=>cosx+(can3)sinx=4sin2xsinx<=>cosx+(can3)sinx=-2(cos3x-cosx)<=>cosx-(can3)sinx=2cos3x<=>(1/2)cosx-(can3/2)sinx=cos3x<=>cos(x+pi/3)=cos3x
c,Đk: sin2x # 0<=>x # kpi/2pt<=>
$cosx+(can3)sinx=8sin^2xcosx
$<=>
$cosx+(can3)sinx=4sin2xsinx
$<=>
$cosx+(can3)sinx=-2(cos3x-cosx)
$<=>
$cosx-(can3)sinx=2cos3x
$<=>
$(1/2)cosx-(can3/2)sinx=cos3x
$<=>
$cos(x+pi/3)=cos3x
$