Cách 1:AM−GM:√2b(a+b)≤a+3b2Do đó: $P\geq \Sigma \frac{2a\sqrt{2}}{a+3b}→$Tachứngminh:$S=Σaa+3b≥34$hay$S=Σa2a2+3ab≥34Cauchy-Schwarz:$$S\geq \frac{(a+b+c)^2}{a^2+b^2+c^2+3ab+3bc+3ca}=\frac{(a+b+c)^2}{a^2+b^2+c^2+\frac{8}{3}(ab+bc+ca)+\frac{1}{3}(ab+bc+ca)}\geq \frac{(a+b+c)^2}{\frac{4}{3}(a^2+b^2+c^2)+\frac{8}{3}(ab+bc+ca)}=\frac{(a+b+c)^2}{\frac{4}{3}(a+b+c)^2}=\frac{3}{4}$Do đó: $P\geq 2\sqrt{2}.\frac{3}{4}=\frac{3\sqrt{2}}{2}Đẳngthứckhia=b=c./$
Cách 1:
AM−GM:√2b(a+b)≤a+3b2Do đó: $
A\geq \Sigma \frac{2a\sqrt{2}}{a+3b}
→$Tachứngminh:$S=Σaa+3b≥34$hay$S=Σa2a2+3ab≥34Cauchy-Schwarz:$$S\geq \frac{(a+b+c)^2}{a^2+b^2+c^2+3ab+3bc+3ca}=\frac{(a+b+c)^2}{a^2+b^2+c^2+\frac{8}{3}(ab+bc+ca)+\frac{1}{3}(ab+bc+ca)}\geq \frac{(a+b+c)^2}{\frac{4}{3}(a^2+b^2+c^2)+\frac{8}{3}(ab+bc+ca)}=\frac{(a+b+c)^2}{\frac{4}{3}(a+b+c)^2}=\frac{3}{4}$Do đó: $
A\geq 2\sqrt{2}.\frac{3}{4}=\frac{3\sqrt{2}}{2}
Đẳngthứckhia=b=c./$