ta có $(a-b)(b-c)(c-a)\neq0$ta có $0=a-b+b-c+c-a=\frac{a-b+b-c+c-a}{(a-b)(b-c)(c-a)}=\sum\frac{1}{(a-b)(b-c)}$H=$\sum\frac{1}{(a-b)^{2}}=\sum\frac{1}{(a-b)^{2}}+2\sum_{a}^{b} \frac{1}{(a-b)(b-c)}$=$ (\sum\frac{1}{a-b})^{2}=\frac{1}{(a-b)^{2}}+(\frac{(a-b)^{2}}{((b-c)(a-c))^{2}}+2\frac{a-b}{(a-c)(b-c)}$giả sử $c= \min\left{ a{,}b,c \right}$, khi đó $ab+bc+ca \geq (a-c)(b-c)\geq0$H$\geq \frac{4}{(a-c)(b-c)}\geq \frac{4}{ab+bc+ca}$ ( BĐT cosi)đấu "=" $\Leftrightarrow ......$≥4(a−c)(b−c)≥4ab+bc+ca
ta có $(a-b)(b-c)(c-a)\neq0$ta có $0=a-b+b-c+c-a=\frac{a-b+b-c+c-a}{(a-b)(b-c)(c-a)}=\sum\frac{1}{(a-b)(b-c)}$H=$\sum\frac{1}{(a-b)^{2}}=\sum\frac{1}{(a-b)^{2}}+2\sum_{a}^{b} \frac{1}{(a-b)(b-c)}$=$ (\sum\frac{1}{a-b})^{2}=\frac{1}{(a-b)^{2}}+(\frac{(a-b)^{2}}{((b-c)(a-c))^{2}}+2\frac{a-b}{(a-c)(b-c)}$giả sử $c=min\left{ a,b,c \right}$, khi đó $ab+bc+ca \geq (a-c)(b-c)\geq0$H$\geq \frac{4}{(a-c)(b-c)}\geq \frac{4}{ab+bc+ca}$ ( BĐT cosi)đấu "=" $\Leftrightarrow ......$
ta có $(a-b)(b-c)(c-a)\neq0$ta có $0=a-b+b-c+c-a=\frac{a-b+b-c+c-a}{(a-b)(b-c)(c-a)}=\sum\frac{1}{(a-b)(b-c)}$H=$\sum\frac{1}{(a-b)^{2}}=\sum\frac{1}{(a-b)^{2}}+2\sum_{a}^{b} \frac{1}{(a-b)(b-c)}$=$ (\sum\frac{1}{a-b})^{2}=\frac{1}{(a-b)^{2}}+(\frac{(a-b)^{2}}{((b-c)(a-c))^{2}}+2\frac{a-b}{(a-c)(b-c)}$giả sử $c=
\min\left{ a
{,
}b,c \right}$, khi đó $ab+bc+ca \geq (a-c)(b-c)\geq0$H$\geq \frac{4}{(a-c)(b-c)}\geq \frac{4}{ab+bc+ca}$ ( BĐT cosi)đấu "=" $\Leftrightarrow ......$
≥4(a−c)(b−c)≥4ab+bc+ca