|
|
Mình làm thử cách này nhé: \[{u_n} = \frac{{{2^n}}}{{n!}} =
\frac{{{{(1 + 1)}^n}}}{{n!}} = \frac{{C_n^0 + C_n^1 + ... +
C_n^n}}{{n!}} = \frac{1}{{n!}} + \frac{1}{{(n - 1)!}} + \frac{1}{{2!(n -
2)!}} + ... + \frac{1}{{n!}}\] Khi $n \to + \infty $ thì $n! \to + \infty $ suy ra $ \frac{1}{n!} \to 0 $ Vậy $\lim {u_n} = \lim \frac{1}{{n!}} + \lim \frac{1}{{(n - 1)!}} + \lim \frac{1}{{2!(n - 2)!}} + ... + \lim \frac{1}{{n!}} = 0$
|