f(x) = \frac{1-x+x}{x} + \frac{2-2x+2x}{1-x} = \frac{1-x}{x} + 1 + 2 + \frac{2x}{1-x} = (\frac{1-x}{x} + \frac{2x}{1-x}) + 3 Vì 0 < x < 1 nên \frac{1-x}{x} > 0 ; \frac{2x}{1-x} > 0 Áp dụng bđt Cô-si có f(x) \geq 2\sqrt{\frac{1-x}{x}.\frac{2x}{1-x}} + 3 = 2\sqrt{2} + 3 Min f(x) = 2\sqrt{2} + 3 <=> \frac{1-x}{x} = \frac{2x}{1-x} <=> x^{2} + 2x -1 = 0 <=> x = -1 + \sqrt{2} hoặc x = -1 - \sqrt{2} mà 0 < x < 1 nên x = -1 + \sqrt{2}
f(x) = \frac{1-x+x}{x} + \frac{2-2x+2x}{1-x} = \frac{1-x}{x} + 1 + 2 + \frac{2x}{1-x} = (\frac{1-x}{x} + \frac{2x}{1-x}) + 3 Vì 0 < x < 1 nên \frac{1-x}{x} > 0 ; \frac{2x}{1-x} > 0 Áp dụng bđt Cô-si có f(x) \geq 2\sqrt{\frac{1-x}{x}.\frac{2x}{1-x}} + 3 = 2\sqrt{2} + 3 Min f(x) = 2\sqrt{2} + 3 <=> \frac{1-x}{x} = \frac{2x}{1-x} <=> x^{2} + 2x -1 = 0 <=> x = -1 + \sqrt{2} hoặc x = -1 - \sqrt{2} mà 0 < x < 1 nên x = -1 + \sqrt{2}