$AB$ là đường vuông góc chung của hai đường thẳng $x, y$ chéo nhau, $A$ thuộc $x, B$ thuộc y. Đặt độ dài $AB = d$. $M$ là một điểm thay đổi thuộc $x, N$ là một điểm thay đổi thuộc $y$. Đặt $AM = m, BN $= n\((m \ge 0,n \ge 0)\). Giả sử ta luôn có \({m^2} + {n^2} = k > 0\), $k$ không đổi.
$1.$ Xác định $m, n$ để độ dài đoạn thẳng $MN$ đạt giá trị lớn nhất, nhỏ nhất.
$2. $Trong trường hợp hai đường thẳng $x, y$ vuông góc với nhau và \(mn \ne 0\), hãy xác định $m, n $ ( theo $k$ và $d$) để thể tích tứ diện $ABMN$ đạt giá trị lớn nhất và tính giá trị đó.