|
$I = \,\,\int\limits_{ - 1}^0 {\ln \left( {x + \sqrt {{x^2} + 1} }
\right)dx} + \,\,\int\limits_0^1 {\ln \left( {x + \sqrt {{x^2} + 1} }
\right)dx} $ $I = K + L$ Đặt $x = - t\,\,\,\,\,\,\, \Rightarrow \,\,\,\,dx\,\, = \,\, - dt$ $\begin{array}{l} x = - 1\,\,\,\,\,\,\, \Rightarrow \,\,\,\,t\,\, = \,\,1\\ x = - t\,\,\,\,\,\,\, \Rightarrow \,\,\,\,t\,\, = \,\,0 \end{array}$ Suy ra : $\begin{array}{l} K
= \int\limits_{ - 1}^0 {\ln \left( {x + \sqrt {{x^2} + 1} } \right)dx =
} \int\limits_0^1 {\ln \left( { - t + \sqrt {{t^2} + 1} } \right)dt} \\ \,\,\,\,\,
= \,\,\,\int\limits_0^1 {\ln \frac{1}{{t + \sqrt {{t^2} + 1} }}} dt =
\,\, - \int\limits_0^1 {\ln \left( {x + \sqrt {{x^2} + 1} } \right)dx =
- L} \end{array}$ Vậy $I = K + L = - L + L = 0$ ĐS : $I = 0$
|