|
Đặt $t=a+b-x \implies dt=-dx$ Khi $x=a \Rightarrow t=b, x=b \Rightarrow t=a$ . Như vậy $\int\limits_{a}^{b}f(a+b-x)dx=-\int\limits_{b}^{a}f(t)dt=\int\limits_{a}^{b}f(t)dt=\int\limits_{a}^{b}f(x)dx$ (đpcm). Áp dụng ta có $I=\int\limits_{0}^{\frac{\pi}{4} }\ln (1+\tan x)dx$ $I=\int\limits_{0}^{\frac{\pi}{4} }\ln (1+\tan \left (\frac{\pi}{4} -x\right ))dx$ $I=\int\limits_{0}^{\frac{\pi}{4} }\ln (1+\frac{1-\tan x}{1+\tan x})dx$ $I=\int\limits_{0}^{\frac{\pi}{4} }\ln (\frac{2}{1+\tan x})dx$ $I=\int\limits_{0}^{\frac{\pi}{4} }\ln 2dx-\int\limits_{0}^{\frac{\pi}{4} }\ln (1+\tan x)dx=\int\limits_{0}^{\frac{\pi}{4} }\ln 2dx-I$ $\implies 2I=\int\limits_{0}^{\frac{\pi}{4} }\ln 2dx \implies I=\frac{\pi}{8}\ln 2$
|