|
Ta có: 2(x2+6xy)+6(x2+2xy+3y2)=2(2x+3y)2≥0 ⇒2(x2+6xy)x2+2xy+3y2≥−6 Dấu bằng xảy ra khi: {2x+3y=0x2+y2=1⇔[{x=3√13y=−2√13{x=−3√13y=2√13 2(x2+6xy)−3(x2+2xy+3y2)=−(x−3y)2≥0 ⇒2(x2+6xy)x2+2xy+3y2≤3 Dấu bằng xảy ra khi: {x−3y=0x2+y2=1⇔[{x=3√10y=1√10{x=−3√10y=−1√10
|