|
Điều kiện: $x+y\ge0$. Ta có: $\begin{cases}\sqrt{x^2+x+2}-\sqrt{x+y}=y\\\sqrt{x+y}=x-y+1 \end{cases} $ $\Leftrightarrow \left\{ \begin{array}{l}
\sqrt{x+y}+y=
\sqrt{x^2+x+2}\\
\sqrt{x+y}+y=x+1 \end{array} \right.$ Từ đó, suy ra: $\sqrt{x^2+x+2}=x+1$ $\Leftrightarrow \left\{ \begin{array}{l}
x^2+x+2=x^2+2x+1\\x\ge-1 \end{array} \right.$ $\Leftrightarrow x=1$ Dẫn tới: $\sqrt{y+1}=2-y$ $\Leftrightarrow \left\{ \begin{array}{l} y\le2\\ y+1=4-4y+y^2 \end{array} \right.$ $\Leftrightarrow \left\{ \begin{array}{l} y\le2\\y^2-5y+3=0 \end{array} \right.$ $y=\frac{1}{2}(5-\sqrt{13})$ Vậy: $(x,y)=(1,
\frac{1}{2}(5-\sqrt{13}) )$
|