|
Ta có: $\cot 2C= \frac{1}{2}(\cot C - \cot B)$ $\Leftrightarrow \frac{1-\tan^2C}{2\tan C}=\frac{1}{2}(\cot C - \cot B)$ $\Leftrightarrow \frac{1}{2}(\cot C - \tan C)=\frac{1}{2}(\cot C - \cot B)$ $\Leftrightarrow \tan C=\cot B$ $\Leftrightarrow B+C=\frac{\pi}{2}\Leftrightarrow \Delta ABC$ vuông tại $A$.
|