|
Bổ đề: $\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y},\forall x,y>0$ Ta có: $S=\frac{ab}{1+c}+\frac{ac}{1+b}+\frac{bc}{1+a}$ $=\frac{ab}{(a+c)+(b+c)}+\frac{ac}{(a+b)+(c+b)}+\frac{bc}{(a+b)+(a+c)}$ $\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)+\frac{ac}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)+\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)$ $=\frac{1}{4}\left(\frac{ac+bc}{a+b}+\frac{ab+ac}{b+c}+\frac{ab+bc}{a+c}\right)$ $=\frac{1}{4}(a+b+c)=\frac{1}{4}$ Max$S=\frac{1}{4}\Leftrightarrow a=b=c=\frac{1}{3}$
|