|
Cách 2: Đặt: $2x^2-6x+3=y$, ta được hệ: $\left\{\begin{array}{l}2x^2-6x+3=y\\2y^2-6y+3=x\end{array}\right.$ $\Leftrightarrow \left\{\begin{array}{l}2x^2-6x+3=y\\2x^2-6x-2y^2+6y=y-x\end{array}\right.$ $\Leftrightarrow \left\{\begin{array}{l}2x^2-6x+3=y\\(x-y)(2x+2y-5)=0\end{array}\right.$ $\Leftrightarrow \left[\begin{array}{l}\left\{\begin{array}{l}2x^2-6x+3=y\\x=y\end{array}\right.&(I)\\\left\{\begin{array}{l}2x^2-6x+3=y\\2x+2y-5=0\end{array}\right.&(II)\end{array}\right.$ $(I)\Leftrightarrow \left\{\begin{array}{l}x=y\\2x^2-6x+3=x\end{array}\right.$ $\Leftrightarrow \left[\begin{array}{l}x=y=3\\x=y=\frac{1}{2}\end{array}\right.$ $(II)\Leftrightarrow \left\{\begin{array}{l}2y=5-2x\\4x^2-12x+6=5-2x\end{array}\right.$ $\Leftrightarrow \left[\begin{array}{l} \left\{\begin{array}{l}x=\frac{5-\sqrt{21}}{4}\\y=\frac{5+\sqrt{21}}{4}\end{array}\right.\\\left\{\begin{array}{l}x=\frac{5+\sqrt{21}}{4}\\y=\frac{5-\sqrt{21}}{4}\end{array}\right.\end{array}\right.$
|