|
$Ta có:a^{2}.\sqrt{bc}\leq a^{2}.\frac{b+c}{2}$ $b^{2}.\sqrt{ac}\leq b^{2}.\frac{a+c}{2}$ $c^{2}.\sqrt{ab}\leq c^{2}.\frac{a+b}{2}$ $Suy ra:$ $a^{2}.\sqrt{bc}+b^{2}.\sqrt{ac}+c^{2}.\sqrt{ab}\leq a^{2}.\frac{b+c}{2}+ b^{2}.\frac{a+c}{2}+c^{2}.\frac{a+b}{2}$ $<=> a^{2}.\sqrt{bc}+b^{2}.\sqrt{ac}+c^{2}.\sqrt{ab}\leq \frac{ab.(a+b)}{2}+\frac{bc.(b+c)}{2}+\frac{c.a(c+a)}{2}(*)$ $Biến đổi tương đương dễ dàng chứng minh: ab.(a+b)\leq a^{3}+b^{3} ,bc.(b+c) \leq c^{3}+b^{3},ca.(c+a) \leq a^{3}+c^{3}(**)$ $Từ(*) và (**) Suy ra : a^{2}.\sqrt{bc}+b^{2}.\sqrt{ac}+c^{2}.\sqrt{ab}\leq a^{3}+b^{3}+ c^{3}$
|