|
Put $S=a+b,P=ab$ We have, $A=(a^2+b^2)^2-8a^2b^2$ $=[(a+b)^2-2ab]^2-8a^2b^2$ $=(S^2-2P)^2-8P^2$ $=S^4-4S^2P-4P^2$ $=-4P^2-2\sqrt2P+\dfrac{1}{2}$ $=1-4(P+\dfrac{1}{2\sqrt2})^2\le1$ $A$ is a positive integer iff $A=1$ iff $P=-\dfrac{1}{2\sqrt2}$ This implies, $\left\{\begin{array}{l}a+b=\dfrac{\sqrt[4]8}{2}\\ab=-\dfrac{1}{2\sqrt2}\end{array}\right.$ or $\left[\begin{array}{l}a=\dfrac{1-\sqrt3}{2\sqrt[4]2};b=\dfrac{1+\sqrt3}{2\sqrt[4]2}\\a=\dfrac{1+\sqrt3}{2\sqrt[4]2};b=\dfrac{1-\sqrt3}{2\sqrt[4]2}\end{array}\right.$
|