|
Solution 2:
Applying the AM-GM inequality, we have, $\left(1+\dfrac{3}{2}x^2\right)+\left(1+\dfrac{3}{2}x^2\right)+1\ge3\sqrt[3]{\left(1+\dfrac{3}{2}x^2\right)^2}$ or $1+x^2\ge\sqrt[3]{\left(1+\dfrac{3}{2}x^2\right)^2}$ or $\sqrt{(1+x^2)^3}\ge1+\dfrac{3}{2}x^2 (1)$ On the other hand, $x^4+2x^4+x^2+\dfrac{1}{2}x^2\ge4\sqrt[4]{x^12}=4x^3$ or $3x^4+\dfrac{3}{2}x^2\ge4x^3 (2)$ From $(1)$ and $(2)$, we get: $3x^4-4x^3\ge1-\sqrt{(1+x^2)^3}$ Equality holds iff $x=0$
|