|
b. Ta có: $2x+\sqrt{6x^2+1}>2x+\sqrt{4x^2}=2x+2|x|\ge0$ Suy ra: $2x+\sqrt{6x^2+1}>0,\forall x\in\mathbb{R}$ Ta có: $\sqrt{2x+\sqrt{6x^2+1}}>x+1$ $\Leftrightarrow \left[\begin{array}{l}x+1<0\\\left\{\begin{array}{l}x+1\ge0\\2x+\sqrt{6x^2+1}>(x+1)^2\end{array}\right.\end{array}\right.$ $\Leftrightarrow \left[\begin{array}{l}x<-1\\\left\{\begin{array}{l}x\ge-1\\\sqrt{6x^2+1}>x^2+1\end{array}\right.\end{array}\right.$ $\Leftrightarrow \left[\begin{array}{l}x<-1\\\left\{\begin{array}{l}x\ge-1\\6x^2+1>x^4+2x^2+1\end{array}\right.\end{array}\right.$ $\Leftrightarrow \left[\begin{array}{l}x<-1\\\left\{\begin{array}{l}x\ge-1\\x^2(x^2-4)<0\end{array}\right.\end{array}\right.$ $\Leftrightarrow \left[\begin{array}{l}x<-1\\\left\{\begin{array}{l}x\ge-1\\-2<x<2\\x\ne0\end{array}\right.\end{array}\right.\Leftrightarrow \left[\begin{array}{l}0<x<2\\x<0\end{array}\right.$
|