|
a. Điều kiện: $x(x+3)\ge0 \Leftrightarrow \left[\begin{array}{l}x\ge0\\x\le-3\end{array}\right.$ Bất phương trình tương đương với: $3\sqrt{x(x+3)}>(x+5)(2-x)$ $\Leftrightarrow \left[\begin{array}{l}(x+5)(2-x)\le0\\\left\{ \begin{array}{l}(x+5)(2-x)>0\\9x(x+3)>(x+5)^2(2-x)^2\end{array} \right.\end{array}\right.$ $\Leftrightarrow \left[\begin{array}{l}x\ge2\\x\le-5\\\left\{\begin{array}{l}(x+5)(2-x)>0\\x^4+6x^3-20x^2-87x+100<0\end{array}\right.\end{array}\right.$ $\Leftrightarrow \left[\begin{array}{l}x\ge2\\x\le-5\\\left\{\begin{array}{l}(x+5)(2-x)>0\\(x-1)(x+4)(x^2+3x-25)<0\end{array}\right.\end{array}\right.$ $\Leftrightarrow \left[\begin{array}{l}x<-4\\x>1\end{array}\right.$
|