|
Áp dụng BĐT Cauchy ta có: $\sqrt{\left(\tan\dfrac{A}{2}+\tan\dfrac{B}{2}\right)\left(\tan\dfrac{B}{2}+\tan\dfrac{C}{2}\right)}\le\dfrac{1}{2}\left(\tan\dfrac{A}{2}+\tan\dfrac{B}{2}+\tan\dfrac{B}{2}+\tan\dfrac{C}{2}\right)$ Tương tự suy ra: $\sum_{A,B,C}\sqrt{\left(\tan\dfrac{A}{2}+\tan\dfrac{B}{2}\right)\left(\tan\dfrac{B}{2}+\tan\dfrac{C}{2}\right)}\le2(\tan\dfrac{A}{2}+\tan\dfrac{B}{2}+\tan\dfrac{C}{2})$ Ta chỉ cần chứng minh: $\tan\dfrac{A}{2}+\tan\dfrac{B}{2}+\tan\dfrac{C}{2}\le\cot A+\cot B+\cot C$ Ta có: $\cot A+\cot B=\dfrac{\sin(A+B)}{\sin A\sin B}=\dfrac{2\sin C}{\cos(A-B)-\cos(A+B)}\ge\dfrac{2\sin C}{1+\cos C}=2\tan\dfrac{C}{2}$ Tương tự: $\cot B+\cot C\ge2\tan\dfrac{A}{2},\cot C+\cot A\ge2\tan\dfrac{B}{2}$ Cộng 3 BĐT trên ta có đpcm.
|