|
Đặt $I=\int\limits_0^{\pi/2}\dfrac{\sqrt{\sin x}}{\sqrt{\sin
x}+\sqrt{\cos x}}dx,J=\int\limits_0^{\pi/2}\dfrac{\sqrt{\cos
x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx$ Đặt: $x=\dfrac{\pi}{2}-t\Rightarrow dx=-dt$ Ta có: $I=-\int\limits_{\pi/2}^0\dfrac{\sqrt{\sin(\displaystyle\dfrac{\pi}{2}-t)}}{\sqrt{\sin(\displaystyle\dfrac{\pi}{2}-t)}+\sqrt{\cos(\displaystyle\dfrac{\pi}{2}-t)}}dt$ $=\int\limits_0^{\pi/2}\dfrac{\sqrt{\cos t}}{\sqrt{\sin t}+\sqrt{\cos t}}dt=J$ Mà ta có: $I+J=\int\limits_0^{\pi/2}dx=\dfrac{\pi}{2}$ Suy ra: $I=J=\dfrac{\pi}{4}$
|