|
1. Đặt $x=-t\Rightarrow dx=-dt$ Đổi cận: $x=-\pi\Rightarrow t=\pi$ $x=\pi\Rightarrow t=-\pi$ Khi đó: $I=\int\limits_{\pi}^{-\pi}\dfrac{-\sin^2(-t)dt}{3^{-t}+1}$ $=\int\limits_{\pi}^{-\pi}\dfrac{-3^t\sin^2tdt}{3^t+1}$ $=\int\limits_{-\pi}^{\pi}\dfrac{3^x\sin^2xdx}{3^x+1}$ Suy ra: $2I=\int\limits_{-\pi}^{\pi}\sin^2xdx$ $=\int\limits_{-\pi}^{\pi}\dfrac{1-\cos2x}{2}dx$ $=\left(\dfrac{x}{2}-\dfrac{\sin2x}{4}\right)\left|\begin{array}{l}\pi\\-\pi\end{array}\right.=\pi$ $\Rightarrow I=\dfrac{\pi}{2}$
|