|
a. Ta có: $\left\{\begin{array}{l}x^3+y^3=1\\x^2y+2xy^2+y^3=2\end{array}\right.$ $\Leftrightarrow \left\{\begin{array}{l}x^3+y^3=1\\x^2y+2xy^2+y^3=2(x^3+y^3)\end{array}\right.$ $\Leftrightarrow \left\{\begin{array}{l}x^3+y^3\\2x^3-x^2y-2xy^2+y^3=0\end{array}\right.$ $\Leftrightarrow \left\{\begin{array}{l}x^3+y^3=1\\(x-y)(x+y)(2x-y)=0\end{array}\right.$ $\Leftrightarrow \left[\begin{array}{l}\left\{\begin{array}{l}x^3+y^3=1\\x=y\end{array}\right.\\\left\{\begin{array}{l}x^3+y^3=1\\2x=y\end{array}\right.\end{array}\right.$ $\Leftrightarrow \left[\begin{array}{l}\left\{\begin{array}{l}x=\dfrac{1}{\sqrt[3]2}\\y=\dfrac{1}{\sqrt[3]2}\end{array}\right.\\\left\{\begin{array}{l}x=\dfrac{2}{\sqrt[3]9}\\y=\dfrac{2}{\sqrt[3]9}\end{array}\right.\end{array}\right.$
|